已知:拋物線與x軸有兩個(gè)不同的交點(diǎn)。
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對邊的兩個(gè)端點(diǎn)在拋物線上,試求出這個(gè)最大正方形的邊長。

解:(1),
依題意,得,
∴k的取值范圍是k且k≠1,①;
(2)解方程3x=kx-1,得,
∵方程3x=kx-1的解是負(fù)數(shù),
∴3-k>0,∴k<3,②,
綜合①②,及k為整數(shù),可得k=2,
∴拋物線的解析式為y=x2+4x;
(3)如圖,設(shè)最大正方形ABCD的邊長為m,
則B、C兩點(diǎn)的縱坐標(biāo)為-m,
且由對稱性可知:B、C兩點(diǎn)關(guān)于拋物線對稱軸對稱,
∵拋物線的對稱軸為:x=-2,
∴點(diǎn)C的坐標(biāo)為,
∵C點(diǎn)在拋物線上,
,
整理,得
(舍負(fù)),
。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線與x軸交于A(-2,0)、B(4,0),與y軸交于C(0,4).
(1)求拋物線頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對稱軸上下平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可以平移多少個(gè)單位長度,向下最多可以平移多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,拋物線數(shù)學(xué)公式與x軸正半軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左邊),且AB=4.
(1)求k值;
(2)該拋物線與直線數(shù)學(xué)公式交于C、D兩點(diǎn),求S△ACD;
(3)該拋物線上是否存在不同于A點(diǎn)的點(diǎn)P,使S△PCD=S△ACD?若存在,求出P點(diǎn)坐標(biāo).
(4)若該拋物線上有點(diǎn)P,使S△PCD=tS△ACD,拋物線上滿足條件的P點(diǎn)有2個(gè),3個(gè),4個(gè)時(shí),分別直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線與x軸交于A(-2,0)、B(4,0),與y軸交于C(0,4).
(1)求拋物線頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對稱軸上下平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可以平移多少個(gè)單位長度,向下最多可以平移多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知:拋物線與x軸交于A(-2,0)、B(4,0),與y軸交于C(0,4).
(1)求拋物線頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對稱軸上下平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可以平移多少個(gè)單位長度,向下最多可以平移多少個(gè)單位長度?

查看答案和解析>>

同步練習(xí)冊答案