已知兩個(gè)關(guān)于的二次函數(shù),當(dāng)時(shí),;且二次函數(shù)的圖象的對(duì)稱(chēng)軸是直線

(1)求的值;

(2)求函數(shù)的表達(dá)式;

(3)在同一直角坐標(biāo)系內(nèi),問(wèn)函數(shù)的圖象與的圖象是否有交點(diǎn)?請(qǐng)說(shuō)明理由.

 

【答案】

(1)由

又因?yàn)楫?dāng)時(shí),,即,

解得,或(舍去),故的值為

(2)由,得

所以函數(shù)的圖象的對(duì)稱(chēng)軸為,

于是,有,解得

所以

(3)由,得函數(shù)的圖象為拋物線,其開(kāi)口向下,頂點(diǎn)坐標(biāo)為;

,得函數(shù)的圖象為拋物線,其開(kāi)口向上,頂點(diǎn)坐標(biāo)為;

故在同一直角坐標(biāo)系內(nèi),函數(shù)的圖象與的圖象沒(méi)有交點(diǎn).

【解析】(1)先根據(jù)題意求得的關(guān)系式,當(dāng)時(shí),,即可求得的值;

(2)由(1)得到k的值,再由二次函數(shù)的圖象的對(duì)稱(chēng)軸是直線即可求得a的值;

根據(jù)函數(shù)、的解析式即可得到圖象的特征,從而可以判斷出是否有交點(diǎn)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱(chēng);
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知關(guān)于x的一元二次方程x2+bx+c=x有兩個(gè)實(shí)數(shù)根x1,x2,且滿足x1>0,x2-x1>1.
(1)試證明c>0;
(2)證明b2>2(b+2c);
(3)對(duì)于二次函數(shù)y=x2+bx+c,若自變量取值為x0,其對(duì)應(yīng)的函數(shù)值為y0,則當(dāng)0<x0<x1時(shí),試比較y0與x1的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱(chēng);
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京模擬題 題型:解答題

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0。
(1)求證:m取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱(chēng),
①求二次函數(shù)y的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2 均成立,求二次函數(shù)y3=ax2+bx+c的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱(chēng);
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案