【題目】如圖,已知:四邊形ABCD中,對角線BD平分∠ABC,∠DCB=123°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠DAC的度數(shù)為_________度.
【答案】58°
【解析】
延長和,過點作于點,過D店作于F點,根據BD是的平分線可得出,∠DBC=25°;過D作于G點,可得出,進而得出CD為∠ACF的平分線和已知條件得到AD為的平分線;再結合∠DCB=123°,確定∠ACB=66°,最后根據三角形的外角的定義得到∠ACF=116°,然后根據CD為∠ACF的平分線求得.
解:延長BA和BC,過D點做于E點,過D店做于F點,
是的平分線
∴=25°
,
又
,
為的平分線,
.
在與中,
為∠ACF的平分線
∴∠DCF=∠DCG
又∵∠DCB=123°
∴
∴∠DCF=∠DCG=57°
∴∠ACB=123°-57°=66°,
在中,
,,
,
又∵=
=58°.
故答案為:58°.
科目:初中數(shù)學 來源: 題型:
【題目】1.概念學習.已知,點為其內部一點,連接、、,在、、中,如果存在一個三角形,其內角與的三個內角分別相等,那么就稱點為的等角點.
2.理解應用
(1)判斷以下兩個命題是否為真今題,若為真令題,則在相應橫線內寫“真命題”;反之,則寫“假命題”.
①內角分別為、、的三角形存在等角點; ;
②任意的三角形都存在等角點; ;
(2)如圖①,點是銳角的等角點,若,探究圖①中,、、之間的數(shù)量關系,并說明理由.
3.解決問題
如圖②,在中,,若的三個內角的角平分線的交點是該三角形的等角點,求三角形三個內角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩種不同的數(shù)對處理器、.當數(shù)對輸入處理器時,輸出數(shù)對,記作,,;但數(shù)對輸入處理器時,輸出數(shù)對,記作,,.
(1),( , ),,( , ).
(2)當,,時,求,;
(3)對于數(shù)對,,,一定成立嗎?若成立,說明理由;若不成立,舉例說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應荊州市“創(chuàng)建全國文明城市”號召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長不超過18m,另外三邊由36m長的柵欄圍成.設矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)若矩形空地的面積為160m2,求x的值;
(3)若該單位用8600元購買了甲、乙、丙三種綠色植物共400棵(每種植物的單價和每棵栽種的合理用地面積如下表).問丙種植物最多可以購買多少棵?此時,這批植物可以全部栽種到這塊空地上嗎?請說明理由.
甲 | 乙 | 丙 | |
單價(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 ,CE 平分∠ACD,AE 平分∠BAC,∠EAC+∠ACE=90°.
(1)請判斷 AB 與 CD 的位置關系,并說明理由;
(2)如圖,在(1)的結論下,當∠E=90°保持不變時,移動直角頂點 E,使∠MCE=∠ECD, 當直角頂點 E 點移動時,請確定∠BAE 與∠MCD 的數(shù)量關系,并說明理由;
(3)如圖,在(1)的結論下,P 為線段 AC 上的一個定點,點 Q 為直線 CD 上的一個動點,當點 Q 在射線 CD 上運動時(點 C 除外)∠BAC 與∠CPQ+∠CQP 有何數(shù)量關系?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習三角形的知識時, 發(fā)現(xiàn)如下三個有趣的結論:
(1)如圖①, ∠A=∠C=90°, ∠ABC的平分線與∠ADC的平分線交于點E, 則BE、DE的位置關系是 ;
(2)如圖②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 則BE與DF的位置關系是 ;
(3)如圖③, ∠A=∠C=90°, ∠ABC的外角平分線與∠ADC的外角平分線交于點E, 則BE、DE的位置關系是 . 請你完成命題 (3)證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開展以素質提升為主題的研學活動,推出了以下四個項目供學生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導游;D.植物識別.學校規(guī)定:每個學生都必須報名且只能選擇其中一個項目.八年級(3)班班主任劉老師對全班學生選擇的項目情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結合統(tǒng)計圖中的信息,解決下列問題:
(1)八年級(3)班學生總人數(shù)是 ,并將條形統(tǒng)計圖補充完整;
(2)劉老師發(fā)現(xiàn)報名參加“植物識別”的學生中恰好有兩名男生,現(xiàn)準備從這些學生中任意挑選兩名擔任活動記錄員,請用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔任活動記錄員的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com