如圖,△ABC中,點(diǎn)D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對(duì)相似三角形?請(qǐng)選擇一對(duì)進(jìn)行證明.

解:
圖中相似三角形有△ADE∽△AEC或△BCD∽△ACB兩對(duì).
證明(1)△ADE∽△AEC.
∵CE⊥BD于E,
∴∠CED=90°.
∵∠BDC=60°,
∴∠ECD=30°.
∴CD=2ED.
∵CD=2AD,
∴AD=ED.
∴∠DEA=∠DAE.
∵∠BDC=60°,
∴∠DEA=∠DAE=30°,
∴∠DEA=∠ECD=30°.
∵∠DAE=∠EAC,
∴△ADE∽△AEC.

證明(2)△BCD∽△ACB
提示:在證明△BCD∽△ACB時(shí)
證出①AE=CE,
②AE=BE,
③∠CBD=45°,
④△BCD∽△ACB.
分析:圖中有兩對(duì)相似三角形:(1)△ADE∽△AEC或(2)△BCD∽△ACB;
(1)首先由∠BDC=60°、CE⊥DE證得CD=2DE,由此可得出AD=DE,即∠DAE=∠DEA=30°,即可證得∠DEA=∠ECA=30°,加上公共角∠EAC,即可判定兩個(gè)三角形相似;
(2)同(1)可證得∠EAC=∠ECA=30°,進(jìn)一步可證得∠EBA=∠EAB=15°;由此可得出AE=BE=CE,即△CEB是等腰Rt△;則∠CBE=45°=∠BAC,再加上公共角∠BCD,即可判定兩個(gè)三角形相似.
點(diǎn)評(píng):此題主要考查的是相似三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,△ABC中,點(diǎn)D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對(duì)相似三角形?請(qǐng)選擇一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點(diǎn)D、E分別為AB、AC的中點(diǎn),連接DE,線段BE、CD相交于點(diǎn)O,若OD=2,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點(diǎn)D為BC上一點(diǎn),且AB=AC=CD,則圖中∠1和∠2的關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點(diǎn)D為AB邊上的一點(diǎn),點(diǎn)F為BC延長線上一點(diǎn),DF交AC于點(diǎn)E.下列結(jié)論中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點(diǎn)D在BC上,點(diǎn)E在AB上,BD=BE,下列四個(gè)條件中,不能使△ADB≌△CEB的條件是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案