與拋物線關(guān)于x軸對(duì)稱的圖象表示為( 。

A.         B.

C.           D.

 

【答案】

A

【解析】

試題分析:先把拋物線寫成頂點(diǎn)式,關(guān)于x軸對(duì)稱,變?yōu)橄喾磾?shù),頂點(diǎn)坐標(biāo)變?yōu)殛P(guān)于x軸對(duì)稱的坐標(biāo)即可。

,頂點(diǎn)坐標(biāo)為(2,-6)

關(guān)于x軸對(duì)稱后,二次項(xiàng)系數(shù)變?yōu)?1,頂點(diǎn)坐標(biāo)變?yōu)椋?,6),

則函數(shù)解析式為,

故選A.

考點(diǎn):本題考查的是二次函數(shù)的性質(zhì)

點(diǎn)評(píng):解答本題的關(guān)鍵是掌握關(guān)于x軸對(duì)稱,變?yōu)橄喾磾?shù),頂點(diǎn)坐標(biāo)變?yōu)殛P(guān)于x軸對(duì)稱的坐標(biāo)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線M:y=-x2+2mx+n(m,n為常數(shù),且m>0,n>0)的頂點(diǎn)為A,與y軸交于精英家教網(wǎng)點(diǎn)C;拋物線N與拋物線M關(guān)于y軸對(duì)稱,其頂點(diǎn)為B,連接AC,BC,AB.
問拋物線M上是否存在點(diǎn)P,使得四邊形ABCP為菱形?如果存在,請(qǐng)求出m的值;如果不存在,請(qǐng)說明理由.
說明:
(1)如果你反復(fù)探索,沒有解決問題,請(qǐng)寫出探索過程(要求至少寫3步);
(2)在你完成(1)之后,可以從①、②中選取一個(gè)條件,完成解答(選、俚7分;選、诘10分).
①n=1;②n=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖①,頂點(diǎn)為A的拋物線E:y=ax2-2ax(a>0)與坐標(biāo)軸交于O、B兩點(diǎn).拋物線F與拋物線E關(guān)于x軸對(duì)稱.
(1)求拋物線F的解析式及頂點(diǎn)C的坐標(biāo)(可用含a的式子表示);
(2)如圖②,直線l:y=ax(a>0)經(jīng)過原點(diǎn)且與拋物線E交于點(diǎn)Q,判斷拋物線F的頂點(diǎn)C是否在直線l上;

(3)直線OQ繞點(diǎn)O旋轉(zhuǎn),在x軸上方與直線BC交于點(diǎn)M,與直線AC交于點(diǎn)N.在旋轉(zhuǎn)過程中,請(qǐng)利用圖③,圖④探究∠OMC與∠ABN滿足怎樣的關(guān)系,并驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動(dòng)點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求證:點(diǎn)D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);若不能為矩形,請(qǐng)說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動(dòng)點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動(dòng)時(shí),四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請(qǐng)說明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把拋物線(虛線部分)向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到拋物線,拋物線與拋物線關(guān)于軸對(duì)稱.點(diǎn)、分別是拋物線、軸的交點(diǎn),、分別是拋物線、的頂點(diǎn),線段軸于點(diǎn).

(1)分別寫出拋物線的解析式;

(2)設(shè)是拋物線上與兩點(diǎn)不重合的任意一點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷以、、為頂點(diǎn)的四邊形是什么特殊的四邊形?說明你的理由.

(3)在拋物線上是否存在點(diǎn),使得,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門外國(guó)語學(xué)校初二第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖12,把拋物線(虛線部分)向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到拋物線,拋物線與拋物線關(guān)于軸對(duì)稱.點(diǎn)、、分別是拋物線、軸的交點(diǎn),、分別是拋物線的頂點(diǎn),線段軸于點(diǎn).

(1)分別寫出拋物線的解析式;

(2)設(shè)是拋物線上與、兩點(diǎn)不重合的任意一點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷以、、、為頂點(diǎn)的四邊形是什么特殊的四邊形?說明你的理由.

(3)在拋物線上是否存在點(diǎn),使得,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案