【題目】 學(xué)!鞍僮兡Х健鄙鐖F(tuán)準(zhǔn)備購(gòu)買A,B兩種魔方,已知購(gòu)買2個(gè)A種魔方和6個(gè)B種魔方共需130元,購(gòu)買3個(gè)A種魔方和4個(gè)B種魔方所需款數(shù)相同.

(1)求這兩種魔方的單價(jià);

(2)結(jié)合社員們的需求,社團(tuán)決定購(gòu)買A,B兩種魔方共100個(gè).某商店有兩種優(yōu)惠活動(dòng),如圖所示.請(qǐng)根據(jù)以上信息,購(gòu)進(jìn)A種魔方多少個(gè)時(shí),兩種活動(dòng)費(fèi)用相同?

【答案】1A種魔方的單價(jià)為20元/個(gè),B種魔方的單價(jià)為15元/個(gè);(2)購(gòu)進(jìn)A種魔方45個(gè)時(shí),兩種活動(dòng)費(fèi)用相同.

【解析】

1)設(shè)A種魔方的單價(jià)為x/個(gè),B種魔方的單價(jià)為y/個(gè),根據(jù)“購(gòu)買2個(gè)A種魔方和6個(gè)B種魔方共需130元,購(gòu)買3個(gè)A種魔方和4個(gè)B種魔方所需款數(shù)相同”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)購(gòu)進(jìn)A種魔方m個(gè)(0m50),則購(gòu)進(jìn)B種魔方(100-m)個(gè),根據(jù)圖片描述列出兩種活動(dòng)方案需花費(fèi)的總價(jià)格,使得兩種價(jià)格相等求得m

解:(1)設(shè)A種魔方的單價(jià)為x/個(gè),B種魔方的單價(jià)為y/個(gè),

根據(jù)題意,得

解得

答:A種魔方的單價(jià)為20/個(gè),B種魔方的單價(jià)為15/個(gè).

(2)設(shè)購(gòu)進(jìn)A種魔方m個(gè),則購(gòu)進(jìn)B種魔方(100m)個(gè),

根據(jù)題意,得

0.8×20m0.4×15(100m)20m15(100mm)

解得m45.

答:購(gòu)進(jìn)A種魔方45個(gè)時(shí),兩種活動(dòng)費(fèi)用相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點(diǎn)P,Q同時(shí)分別從A,D兩點(diǎn)出發(fā),以1cm/s速度沿AF,DC向終點(diǎn)F,C運(yùn)動(dòng),連接PB,QE,PE,BQ.設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)求證:四邊形PEQB為平行四邊形;
(2)填空:
①當(dāng)t=s時(shí),四邊形PBQE為菱形;
②當(dāng)t=s時(shí),四邊形PBQE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①兩條直線相交,一個(gè)角的兩鄰補(bǔ)角相等,則這兩條直線垂直;②同位角相等;③點(diǎn)(5,6)與點(diǎn)(6,5)表示同一點(diǎn);④若兩個(gè)同旁內(nèi)角互補(bǔ),則它們的角平分線互相垂直;⑤點(diǎn)(5)在第二象限.其中假命題的個(gè)數(shù)為( 

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點(diǎn)ECD上,連接AEBD,點(diǎn)GAE中點(diǎn),過點(diǎn)GFHAE,FH分別交ADBC于點(diǎn)F,HFHBD交于點(diǎn)K,且HK2FG,若EG,則線段AF的長(zhǎng)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點(diǎn)M,AC與EF交于點(diǎn)N,BC與EF交于點(diǎn)P.

(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時(shí),四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠A100°,∠C70°.點(diǎn)M,N分別在AB,BC上,將BMN沿MN翻折,得FMN.若MFAD,FNDC,則∠D_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小明設(shè)計(jì)用手電來測(cè)量某古城墻高度的示意圖,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測(cè)得AB=1.2米,BP=1.8米,PD=12米,那么該古城墻的高度是( )

A.6米
B.8米
C.18米
D.24米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠B30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則SDACSABC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC內(nèi)接于圓O,I是△ABC的內(nèi)心,AI的延長(zhǎng)線交圓O于點(diǎn)D.
(1)求證:BD=DI;
(2)若OI⊥AD,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案