閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
解:(1)點(diǎn)E是四邊形ABCD的邊AB上的相似點(diǎn)。理由如下:
∵∠A=55°,∴∠ADE+∠DEA=125°。
∵∠DEC=55°,∴∠BEC+∠DEA=125°。
∴∠ADE=∠BEC。
∵∠A=∠B,∴△ADE∽△BEC。
∴點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn)。
(2)作圖如下:
(3)∵點(diǎn)E是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),
∴△AEM∽△BCE∽△ECM!唷螧CE=∠ECM=∠AEM。
由折疊可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD。
∴∠BCE=∠BCD=30°。∴BE=CE=AB。
在Rt△BCE中,,
∴,∴。
解析試題分析:(1)要證明點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn),只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問題得解。
(2)根據(jù)兩個(gè)直角三角形相似得到強(qiáng)相似點(diǎn)的兩種情況即可。
(3)因?yàn)辄c(diǎn)E是梯形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn),所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對(duì)應(yīng)線段成比例,可以判斷出AE和BE的數(shù)量關(guān)系,從而可求出解!
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直角△ABC中,∠C=90°,AB=2,sinB=,點(diǎn)P為邊BC上一動(dòng)點(diǎn),PD∥AB,PD交AC于點(diǎn)D,連結(jié)AP.
(1)求、的長(zhǎng);
(2)設(shè)的長(zhǎng)為,的面積為.當(dāng)為何值時(shí),最大并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊長(zhǎng)為AO=6,AC=8,
(1)如圖①,E是OB的中點(diǎn),將△AOE沿AE折疊后得到△AFE,點(diǎn)F在矩形AOBC內(nèi)部,延長(zhǎng)AF交BC于點(diǎn)G.求點(diǎn)G的坐標(biāo);
(2)定義:若以不在同一直線上的三點(diǎn)中的一點(diǎn)為圓心的圓恰好過另外兩個(gè)點(diǎn),這樣的圓叫做黃金圓.如圖②,動(dòng)點(diǎn)P以每秒2個(gè)單位的速度由點(diǎn)C向點(diǎn)A沿線段CA運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒4個(gè)單位的速度由點(diǎn)O向點(diǎn)C沿線段OC運(yùn)動(dòng);求:當(dāng) PQC三點(diǎn)恰好構(gòu)成黃金圓時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,請(qǐng)問在BD上是否存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?若存在,求BP的長(zhǎng);若不存在,請(qǐng)說明理由;
(2)若AB=9,CD=4,BD=12,請(qǐng)問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長(zhǎng);
(3)若AB=9,CD=4,BD=15,請(qǐng)問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長(zhǎng);
(4)若AB=m,CD=n,BD=l,請(qǐng)問m,n,l滿足什么關(guān)系時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)P點(diǎn)??jī)蓚(gè)P點(diǎn)?三個(gè)P點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在Rt△ABC,∠C=90°,D為AB邊上一點(diǎn),點(diǎn)M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點(diǎn)F,NE⊥AB于點(diǎn)E.
(1)特殊驗(yàn)證:如圖1,若AC=BC,且D為AB中點(diǎn),求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點(diǎn),(1)中的兩個(gè)結(jié)論有一個(gè)仍成立,請(qǐng)指出并加以證明;
②如圖3,若BD=kAD,條件中“點(diǎn)M在BC邊上”改為“點(diǎn)M在線段CB的延長(zhǎng)線上”,其它條件不變,請(qǐng)?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,梯形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點(diǎn),EF與BD相交于點(diǎn)M。
(1)求證:△EDM∽△FBM;
(2)若DB=9,求BM.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com