某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:

銷售單價x
(元/件)

55
60
70
75

一周的銷售量y
(件)

450
400
300
250

(1)直接寫出y與x的函數(shù)關系式:                           
(2)設一周的銷售利潤為S元,請求出S與x的函數(shù)關系式,并確定當銷售單價在什么范圍內變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?

(1)y=-10x+1000
(2)當50≤x≤70時,銷售利潤隨著銷售單價的增大而增大
(3)8750元

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線與x軸交于A(5,0)、B(-1,0)兩點,過點A作直線AC⊥x軸,交直線于點C;
(1)求該拋物線的解析式;
(2)求點A關于直線的對稱點的坐標,判定點是否在拋物線上,并說明理由;
(3)點P是拋物線上一動點,過點P作y軸的平行線,交線段于點M,是否存在這樣的點P,使四邊形PACM是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

心理學家通過實驗發(fā)現(xiàn):初中學生聽講的注意力隨時間變化,講課開始時,學生注意力逐漸增強,中間有一段平穩(wěn)狀態(tài),隨后開始分散.學生注意力指標數(shù)y隨時間表t(分鐘)變化的函數(shù)圖象如下.當0≤t≤10時,圖像是拋物線的一部分,當10≤t≤20時和20≤t≤40時,圖像是線段。
(1)當0≤t≤10時,求注意力指標數(shù)y與時間t的函數(shù)關系式;
(2)一道數(shù)學探究題需要講解24分鐘,問老師能否經(jīng)過恰當安排,使學生在探究這道題時,注意力指標數(shù)不低于45?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(點P與F、G不重合),作PQ∥y軸與拋物線交于點Q.
(1)若經(jīng)過B、E、C三點的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b=         ,c=         (直接填空)
(2)①以P、D、E為頂點的三角形是直角三角形,則點P的坐標為         (直接填空)
②若拋物線頂點為N,又PE+PN的值最小時,求相應點P的坐標.
(3)連結QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔,李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈,已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=-10x+500.
⑴李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
⑵設李明獲得的利潤為W(元),當銷售單價定為多少元時,每月可獲得最大利潤?
⑶物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元,如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應滿足的條件以及x的取值范圍.
(3)設二次函數(shù)的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在如圖的直角坐標系中,已知點A(2,0)、B(0,-4),將線段AB繞點A按逆時針方向旋轉90°至AC.

(1)求點C的坐標;
(2)若拋物線y=-x2+ax+4經(jīng)過點C.
①求拋物線的解析式;
②在拋物線上是否存在點P(點C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某個體戶春節(jié)前代理銷售某種品牌的酒,已知進價為每件40元,生產(chǎn)廠家要求銷售價不少于40元,且不大于70元,市場調查發(fā)現(xiàn):若每件以50元銷售,平均每天可銷售90件,價格每降低1元,平均每天多銷售3件,價格每升高1元,平均每天少銷售3件.
(1)寫出平均每天銷售量y(件)與每件銷售價x(元)之間的函數(shù)關系式,并注明自變量的取值范圍;
(2)求出該個體戶每天銷售這種酒的毛利潤W(元)與每件酒的售價x(元)之間的函數(shù)關系式,并注明自變量的取值范圍(每件的毛利潤=售價-進價);
(3)當酒的售價為多少時平均每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,正方形ABCD邊長是16 cm,P是AB上任意一點(與A、B不重合),QP⊥DP.設AP="x" cm,BQ="y" cm.試求出y與x之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案