【題目】如圖,已知AB∥CD,CE,BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點(diǎn)為E3……
第n次操作,分別作∠ABEn-1和∠DCEn-1的平分線,交點(diǎn)為En.
(1)如圖①,求證:∠E=∠B+∠C;
(2)如圖②,求證:∠E1=∠E;
(3)猜想:若∠En=b°,求∠BEC的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠BEC=2nb°.
【解析】試題分析:(1)先過(guò)E作EF∥AB,根據(jù)AB∥CD,得出AB∥EF∥CD,再根據(jù)平行線的性質(zhì),得出∠B=∠1,∠C=∠2,進(jìn)而得到∠BEC=∠ABE+∠DCE;
(2)先根據(jù)∠ABE和∠DCE的平分線交點(diǎn)為E1,運(yùn)用(1)中的結(jié)論,得出∠CE1B=∠ABE1+∠DCE1= ∠ABE+∠DCE=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;
(3)根據(jù)∠ABE2和∠DCE2的平分線,交點(diǎn)為E3,得出∠BE3C=∠BEC;…據(jù)此得到規(guī)律∠En=∠BEC,最后求得∠BEC的度數(shù).
試題解析:(1)如圖①,過(guò)E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠1,∠C=∠2,
∵∠BEC=∠1+∠2,
∴∠BEC=∠ABE+∠DCE;
(2)如圖2,∵∠ABE和∠DCE的平分線交點(diǎn)為E1,
∴由(1)可得,
∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;
∵∠ABE1和∠DCE1的平分線交點(diǎn)為E2,
∴由(1)可得,
∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;
(3)如圖2,∵∠ABE2和∠DCE2的平分線,交點(diǎn)為E3,
∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;
…
以此類(lèi)推,∠En=∠BEC,
∴當(dāng)∠En=α度時(shí),∠BEC等于2nα度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】貴陽(yáng)市某消防支隊(duì)在一幢居民樓前進(jìn)行消防演習(xí),如圖所示,消防官兵利用云梯成功救出在C處的求救者后,發(fā)現(xiàn)在C處正上方17米的B處又有一名求救者,消防官兵立刻升高云梯將其救出,已知點(diǎn)A與居民樓的水平距離是15米,且在A點(diǎn)測(cè)得第一次施救時(shí)云梯與水平線的夾角∠CAD=60°,求第二次施救時(shí)云梯與水平線的夾角∠BAD的度數(shù)(結(jié)果精確到1°).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】18世紀(jì)最杰出的瑞士數(shù)學(xué)家歐拉,最先把關(guān)于x的多項(xiàng)式用符號(hào)“f(x)”表示,如f(x)=﹣3x2+2x﹣1,把x=﹣2時(shí)多項(xiàng)式的值表示為f(﹣2),則f(﹣2)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下列各組線段長(zhǎng)為邊,不能組成三角形的是( )
A.8、7、13B.3、4、12C.5、5、3D.5、7、11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)B(﹣1,0),D(﹣2,5)兩點(diǎn),與x軸另一交點(diǎn)為A,點(diǎn)H是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)H的直線PQ⊥x軸,分別交直線AD、拋物線于點(diǎn)Q,P.
(1)求拋物線的解析式;
(2)是否存在點(diǎn)P,使∠APB=90°,若存在,求出點(diǎn)P的橫坐標(biāo),若不存在,說(shuō)明理由;
(3)連接BQ,一動(dòng)點(diǎn)M從點(diǎn)B出發(fā),沿線段BQ以每秒1個(gè)單位的速度運(yùn)動(dòng)到Q,再沿線段QD以每秒個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)Q的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)t最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一塊三角板ABC的直角頂點(diǎn)C放在直尺的一邊PQ上,直尺的另一邊MN與三角板的兩邊AC、BC分別交于兩點(diǎn)E、D,且AD為∠BAC的平分線,∠B=300,∠ADE=150.
(1)求∠BDN的度數(shù);
(2)求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)54米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為2米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭(zhēng)議的情境:請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開(kāi)圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).
(1)填空: a= ,b= ,c= ;
(2)先化簡(jiǎn),再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com