如圖,⊙O1和⊙O2內(nèi)切,它們的半徑分別為3和1,過O1作⊙O2的切線,切點為A,則O1A的長為( )

A.2
B.4
C.
D.
【答案】分析:本題可將O1和O2、O2和A連接起來,構(gòu)成以O1O2為斜邊的直角三角形,再根據(jù)勾股定理即可得出O1A的長.
解答:解:連接O1和O2、O2和A,構(gòu)成以O1O2為斜邊的直角三角形,
則O1A===
故選C.
點評:本題考查了圓與圓的位置關(guān)系,兩圓內(nèi)切,圓心距等于兩圓的半徑差,再根據(jù)圖形作出直角三角形求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、已知:如圖,⊙O1和⊙O2相交于A、B兩點,動點P在⊙O2上,且在⊙1外,直線PA、PB分別交⊙O1于C、D,問:⊙O1的弦CD的長是否隨點P的運動而發(fā)生變化?如果發(fā)生變化,請你確定CD最長和最短時P的位置,如果不發(fā)生變化,請你給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O1和⊙O2相交于A、B兩點,過B點作⊙O1的切線交⊙O2于D點,連接DA并延精英家教網(wǎng)長⊙O1相交于C點,連接BC,過A點作AE∥BC與⊙O相交于E點,與BD相交于F點.
(1)求證:EF•BC=DE•AC;
(2)若AD=3,AC=1,AF=
3
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O1和⊙O2相交于A、B兩點,⊙O1的弦AC與⊙O2相切,P是
AmC
的中點,PA精英家教網(wǎng)、PB的延長線分別交⊙O2于點E、F,PB交AC于D.
(1)求證:PC∥AF;
(2)求證:AE•PC=BE•PD;
(3)若A是PE的中點,則⊙O1與⊙O2是否是等圓?若不是等圓,請說明理由;若是等圓,請給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖.⊙O1和⊙O2外切于點A,BC是⊙O1和⊙O2的公切線,B、C為切點,求證:AB⊥AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內(nèi)切于點P,過點P的直線交⊙O1于點D,交⊙O2于點E;DA與⊙O2相切,切點為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長.

查看答案和解析>>

同步練習冊答案