(2012•青海)若m,n為實數(shù),且|2m+n-1|+
m-2n-8
=0,則(m+n)2012的值為
1
1
;分式方程
2
2x+1
+
1
2x-1
=
5
4x2-1
的解為
x=1
x=1
分析:根據(jù)幾個非負(fù)數(shù)和的性質(zhì)得到
2m+n-1=0
m-2n-8=0
,然后解方程組得到m、n的值.再代入(m+n)2012計算即可;
對于分式方程,先去分母得到2(2x-1)+2x+1=5,可解得x=1,然后進(jìn)行檢驗確定分式方程的解.
解答:解:∵|2m+n-1|+
m-2n-8
=0,
2m+n-1=0
m-2n-8=0
,
解得
m=2
n=-3
,
∴(m+n)2012=(2-3)2012=1;
方程
2
2x+1
+
1
2x-1
=
5
4x2-1
兩邊同乘以(2x+1)(2x-1)得,2(2x-1)+2x+1=5,
解得x=1,
檢驗:當(dāng)x=1時,(2x+1)(2x-1)≠0,
所以原方程的解為x=1.
點評:本題考查了解分式方程:先去分母,把分式方程轉(zhuǎn)化為整式方程,再解整式方程,然后把整式方程的解代入原方程進(jìn)行檢驗,最后確定分式方程的解.也考查了幾個非負(fù)數(shù)和的性質(zhì)以及解二元一次方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青海)已知:如圖,D是△ABC的邊AB上一點,CN∥AB,DN交AC于點M,MA=MC.
①求證:CD=AN;
②若∠AMD=2∠MCD,求證:四邊形ADCN是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧波模擬)在“2010年重慶春季房交會”期間,某房地產(chǎn)開發(fā)企業(yè)推出A、B、C、D四種類型的住房共1000套進(jìn)行展銷,C型號住房銷售的成交率為50%,其它型號住房的銷售情況繪制在圖1和圖2兩幅尚不完整的統(tǒng)計圖中.
(1)參加展銷的D型號住房套數(shù)為
250
250
套.
(2)請你將圖2的統(tǒng)計圖補(bǔ)充完整.
(3)若由2套A型號住房(用A1,A2表示),1套B型號住房(用B表示),1套C型號住房(用C表示)組成特價房源,并從中抽出2套住房,將這兩套住房的全部銷售款捐給青海玉樹地震災(zāi)區(qū),請用樹狀圖或列表法求出2套住房均是A型號的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青海)如圖,AB是⊙O的直徑,弦CD⊥AB于點N,點M在⊙O上,∠1=∠C
(1)求證:CB∥MD;
(2)若BC=4,sinM=
23
,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青海)如圖(*),四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你認(rèn)真閱讀下面關(guān)于這個圖的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,因此可以選取AB的中點M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過程:
證明:如圖1,取AB的中點M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點E,M分別為正方形的邊BC和AB的中點
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點E是邊BC的中點”改為“點E是邊BC延長線上的一點”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強(qiáng)看,若不成立請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案