﹣3的相反數(shù)是( 。
| A. | 3 | B. | ﹣3 | C. |
| D. | ﹣ |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)y2=圖象的一個交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)B到直線OM的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直線y=﹣2x+m與直線y=2x﹣1的交點(diǎn)在第四象限,則m的取值范圍是( )
| A. | m>﹣1 | B. | m<1 | C. | ﹣1<m<1 | D. | ﹣1≤m≤1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線y1=ax(x﹣t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A (t,4) ,k=。╧>0) ;
(2)隨著三角板的滑動,當(dāng)a=時:
①請你驗(yàn)證:拋物線y1=ax(x﹣t)的頂點(diǎn)在函數(shù)y=的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時,求t的值;
(3)直線OA與拋物線的另一個交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直角坐標(biāo)平面上將二次函數(shù)y=x2﹣2的圖象向左平移1個單位,再向上平移1個單位,則其頂點(diǎn)為( 。
| A. | (0,0) | B. | (1,﹣1) | C. | (0,﹣1) | D. | (﹣1,﹣1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個交點(diǎn)為A(﹣1,n).
(1)求反比例函數(shù)y=的解析式;
(2)若P是坐標(biāo)軸上一點(diǎn),且滿足PA=OA,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com