【題目】閱讀下列材料: 如圖1,在Rt△ABC中,∠C=90°,D為邊AC上一點(diǎn),DA=DB,E為BD延長(zhǎng)線上一點(diǎn),∠AEB=120°,猜想AC、BE、AE的數(shù)量關(guān)系,并證明.
小明的思路是:根據(jù)等腰△ADB的軸對(duì)稱性,將整個(gè)圖形沿著AB邊的垂直平分線翻折,得到點(diǎn)C的對(duì)稱點(diǎn)F,如圖2,過點(diǎn)A作AF⊥BE,交BE的延長(zhǎng)線于F,請(qǐng)補(bǔ)充完成此問題;
參考小明思考問題的方法,解答下列問題:
如圖3,等腰△ABC中,AB=AC,D、F在直線BC上,DE=BF,連接AD,過點(diǎn)E作EG∥AC交FH的延長(zhǎng)線于點(diǎn)G,∠DFG+∠D=∠BAC.
(1)探究∠BAD與∠CHG的數(shù)量關(guān)系;
(2)請(qǐng)?jiān)趫D中找出一條和線段AD相等的線段,并證明.
【答案】
(1)解:閱讀材料,如圖2中,結(jié)論:AC=BE+ AE.理由如下,
∵DA=DB,
∴∠DAB=∠DBA,
∵AF⊥BF,
∴∠F=∠C=90°,
在△ABF和△BAC中,
,
∴△ABF≌△BAC,
∴AC=BF,
∵∠AEB=120°=∠F+∠FAE,
∴∠FAE=30°,∴EF= AE,
∴AC=BF=BE+EF=BE+ AE,
∴AC=BE+ AE.
問題:(1)如圖3中,
∵∠ACD=∠D+∠CAD,∠D+∠CFG=∠BAC,
∴∠CHG=∠CFH+∠FCH=∠CFH+∠D+∠CAD=∠BAC+∠CAD=∠BAD,
∴∠CHG=∠BAD.
(2)解:結(jié)論:AD=FG.理由如下,
如圖3中,延長(zhǎng)BF到R,使得BR=CD,連接AR,作AJ∥CD交EG的延長(zhǎng)線于J,連接FJ.
∵AJ∥CE,AC∥JE,
∴四邊形ACEJ,四邊形ACGK是平行四邊形,
∴AJ=CE,AC=JE,
∵AB=CA,
∴JE=AB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABR=∠ACD,
在△ABR和△ACD中,
,
∴△ABR≌△ACD,
∴AR=AD,
∵BR=CD,BF=ED,
∴FR=CE=AJ,EF=BD,∵AJ∥RF,
∴四邊形ARFJ是平行四邊形,
∴JF=AR=AD,
在△ABD和△JEF中,
,
∴△ABD≌△JEF,
∴∠1=∠BAD,
∵∠BAD=∠CHG=∠2,
∴∠1=∠2,
∴FG=FJ,
∴AD=FG.
【解析】閱讀材料:如圖2中,結(jié)論:AC=BE+ AE.理由如下,只要證明△ABF≌△BAC,推出AC=BF,再證明EF= AE,可得AC=BF=BE+EF=BE+ AE. 問題:(1)由∠ACD=∠D+∠CAD,∠D+∠CFG=∠BAC,推出∠CHG=∠CFH+∠FCH=∠CFH+∠D+∠CAD=∠BAC+∠CAD=∠BAD,可得∠CHG=∠BAD.(2)結(jié)論:AD=FG.如圖3中,延長(zhǎng)BF到R,使得BR=CD,連接AR,作AJ∥CD交EG的延長(zhǎng)線于J,連接FJ.首先證明四邊形ACEJ,四邊形AJFR是平行四邊形,再證明△ABD≌△JEF,想辦法證明∠1=∠2,即可解決問題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識(shí),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°,以及對(duì)線段垂直平分線的性質(zhì)的理解,了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A點(diǎn)坐標(biāo)為(2,4),B點(diǎn)坐標(biāo)為(﹣3,﹣2),C點(diǎn)坐標(biāo)為(3,1).
(1)在圖中畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′(不寫畫法),并寫出點(diǎn)A′,B′,C′的坐標(biāo).
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“翻開八年級(jí)數(shù)學(xué)課本,恰好翻到第28頁”,這個(gè)事件是( 。
A. 必然事件 B. 隨機(jī)事件 C. 不可能事件 D. 確定事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果崇左市市區(qū)某中午的氣溫是37℃,到下午下降了3℃,那么下午的氣溫是( )
A.40℃
B.38℃
C.36℃
D.34℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“配方法”解一元二次方程x2﹣16x+24=0,下列變形結(jié)果,正確的是( 。
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A、B、C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A、B、E三點(diǎn)在同一直線上(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的個(gè)數(shù)是( )
(1)過一點(diǎn)有且只有一條直線與已知直線平行
(2)過一點(diǎn)有且只有一條直線與已知直線垂直
(3)在同一平面內(nèi),兩條直線的位置關(guān)系只有相交、平行兩種
(4)不相交的兩條直線叫做平行線
(5)有公共頂點(diǎn)且有一條公共邊的兩個(gè)角互為鄰補(bǔ)角。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com