【題目】如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C

處的飛機上,測量人員測得正前方AB兩點處的俯角分別為60°45°.求隧道AB的長

(≈1.73)

【答案】簡答:∵OA,

OB=OC=1500,

∴AB=(m).

答:隧道AB的長約為635m.

【解析】

試題首先過點CCO⊥AB,根據Rt△AOC求出OA的長度,根據Rt△CBO求出OB的長度,然后進行計算.

試題解析:如圖,過點CCO⊥直線AB,垂足為O,則CO="1500m"

∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°

Rt△CAO 中,OA==1500×=500m

Rt△CBO 中,OB=1500×tan45°=1500m

∴AB=1500500≈1500865=635(m)

答:隧道AB的長約為635m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E是正方形ABCD的邊CD上一點,BFAEF.

(1)求證:△ABF∽△EAD;

(2)當AD=2,=時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小晶和小紅玩擲骰子游戲,每人將一個各面分別標有數(shù)字、、、、、的正方體骰子擲一次,把兩人擲得的點數(shù)相加,并約定:若點數(shù)之和等于,則小晶贏;若點數(shù)之和等于,則小紅贏;若點數(shù)之和是其他數(shù),則兩人不分勝負,那么(

A. 小晶贏的機會大 B. 小紅贏的機會大

C. 小晶、小紅贏的機會一樣大 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在石家莊地鐵3號線的建設中,某路段需要甲乙兩個工程隊合作完成.已知甲隊修600米和乙隊修路450米所用的天數(shù)相同,且甲隊比乙隊每天多修50.

(1)求甲隊每天修路多少米?

(2)地鐵3號線全長45千米,若甲隊施工的時間不超過120天,則乙隊至少需要多少天才能完工?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖分別是兩根木棒及其影子的情形.

(1)哪個圖反映了太陽光下的情形?哪個圖反映了路燈下的情形?

(2)在太陽光下,已知小明的身高是1.8米,影長是1.2米,旗桿的影長是4米,求旗桿的高;

(3)請在圖中分別畫出表示第三根木棒的影長的線段.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進價分別是多少元?

2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,點DBC的中點,AB =DEBEAC

1)求證:△ABC≌△DEB;

2)連結ADAE、CE,如圖2

①求證:CE是∠ACB的角平分線;

②請判斷△ABE是什么特殊形狀的三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,且CB1,分別以ACBC為邊,在AB的同一側作等邊ACD和等邊CBE,連接DE,AE,∠CDE30°,則ADE的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10,加熱到100,停止加熱,水溫開始下降,此時水溫()與開機后用時(min)成反比例關系.直至水溫降至30,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30時,接通電源后,水溫y)和時間(min)的關系如圖,為了在上午第一節(jié)下課時(845)能喝到不超過50的水,則接通電源的時間可以是當天上午的

A720 B730 C745 D750

查看答案和解析>>

同步練習冊答案