【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點,將△BEC繞點B逆時針旋轉90°后,點E落在CB的延長線上點F處,點C落在點A處.再將線段AF繞點F順時針旋轉90°得線段FG,連結EF、CG.
(1)求證:EF∥CG;
(2)求點C、點A在旋轉過程中形成的、與線段CG所圍成的陰影部分的面積.
【答案】(1)證明見解析;(2) S陰影=.
【解析】試題分析:(1)根據正方形的性質可得AB=BC=AD=2,∠ABC=90°,再根據旋轉變化只改變圖形的位置不改變圖形的形狀可得△ABF和△CBE全等,根據全等三角形對應角相等可得∠FAB=∠ECB,∠ABF=∠CBE=90°,全等三角形對應邊相等可得AF=EC,然后求出∠AFB+∠FAB=90°,再求出∠CFG=∠FAB=∠ECB,根據內錯角相等,兩直線平行可得EC∥FG,再根據一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形EFGC是平行四邊形,然后根據平行四邊形的對邊平行證明;
(2)求出FE、BE的長,再利用勾股定理列式求出AF的長,根據平行四邊形的性質可得△FEC和△CGF全等,從而得到S△FEC=S△CGF,再根據S陰影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG列式計算即可得解.
試題解析:(1)證明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°.∵△BEC繞點B逆時針旋轉90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=CE,∴∠AFB+∠FAB=90°.∵線段AF繞點F順時針旋轉90°得線段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG.∵AF=CE,AF=FG,∴EC=FG,∴四邊形EFGC是平行四邊形,∴EF∥CG;
(2)解:∵AD=2,E是AB的中點,∴BF=BE=AB=×2=1,∴AF===,由平行四邊形的性質,△FEC≌△CGF,∴S△FEC=S△CGF,∴S陰影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG=
= .
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,O 是△ABC 所在平面內的一點,連接 OB、OC,將∠ABO、∠ACO分別記為∠1、∠2.
(1)如圖(1),當點 O 在圖中所示的位置時,∠1+∠2+∠A+∠O= ;
(2)如圖(2),當點 O 在△ABC 的內部時,∠1、∠2、∠A、∠OC四個角之間滿足怎樣 的數(shù)量關系?請寫出你的結論并說明理由;
(3)當點 O 在△ABC 所在平面內運動時(點 O 不在三邊所在的直線上),由于所處的位 置不同,∠1、∠2、∠A、∠OC四個角之間滿足的數(shù)量關系還存在著與(1)、(2) 中不同的結論,請在圖(3)中畫出一種不同的示意圖,并直接寫出相應的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,甲、乙兩車分別從相距480km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,甲車到達C地后因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關系如圖2,結合圖象信息解答下列問題:
(1)乙車的速度是 千米/時,乙車行駛的時間t= 小時;
(2)求甲車從C地按原路原速返回A地的過程中,甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關系式;
(3)直接寫出甲車出發(fā)多長時間兩車相距80千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點A在原點,B、C坐標分別為B(3,0),C(2,2),將△ABC向左平移1個單位后再向下平移2單位,可得到△A′B′C′.
(1)請畫出平移后的△A′B′C′的圖形;
(2)寫出△A′B′C′各個頂點的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點D從點A出發(fā)以1cm/s的速度運動到點C停止.作DE⊥AC交邊AB或BC于點E,以DE為邊向右作正方形DEFG.設點D的運動時間為t(s).
(1)求AC的長.
(2)請用含t的代數(shù)式表示線段DE的長.
(3)當點F在邊BC上時,求t的值.
(4)設正方形DEFG與△ABC重疊部分圖形的面積為S(cm2),當重疊部分圖形為四邊形時,求S與t之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線AB與x軸相交于點C,AD⊥x軸于點D.
(1)m= ;
(2)求點C的坐標;
(3)在x軸上是否存在點E,使以A、B、E為頂點的三角形與△ACD相似?若存在,求出點E的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】沙坪壩區(qū)2017年已經成功創(chuàng)建國家衛(wèi)生城區(qū),現(xiàn)在正全力爭創(chuàng)全國文明城區(qū)(簡稱“創(chuàng)文”),某街道積極響應“創(chuàng)文”活動,投入一定資金用于綠化一塊閑置空地,購買了甲、乙兩種樹木共72棵,其中甲種樹木每棵90元,乙種樹木每棵80元,共用去資金6160元.
(1)求甲、乙兩種樹木各購買了多少棵?
(2)經過一段時間后,種植的這批樹木成活率高,綠化效果好,該街道決定再購買一批這兩種樹木綠化另一塊閑置空地,兩種樹木的購買數(shù)量均與第一批相同,購買時發(fā)現(xiàn)甲種樹木單價上漲了,乙種樹木單價下降了,且總費用不超過6804元,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com