【題目】計算下列各題
(1)計算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0;
(2)先化簡,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.

【答案】
(1)解:原式=1﹣ +2 ﹣1=
(2)解:原式=4x2﹣4x+1﹣6+4x=4x2﹣5,

把x=﹣2代入原式,得

=4×(﹣2)2﹣5

=11.


【解析】(1)本題涉及零指數(shù)冪、乘方、特殊角的三角函數(shù)值、二次根式化簡四個考點.針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果;(2)根據(jù)整式的乘法,可化簡代數(shù)式,根據(jù)代數(shù)式求值的方法,可得答案.
【考點精析】利用零指數(shù)冪法則和實數(shù)的運算對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

1B出發(fā)時與A相距______千米.

2B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是______小時.

3B出發(fā)后______小時與A相遇.

4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,______小時與A相遇,相遇點離B的出發(fā)點______千米.在圖中表示出這個相遇點C

5)求出A行走的路程S與時間t的函數(shù)關系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

(1)求A、B兩點的坐標;

(2)△COM的面積SM的移動時間t之間的函數(shù)關系式;

(3)當t為何值時△COM≌△AOB,并求此時M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營救受困群眾,途經(jīng)地時,由所攜帶的救生艇將地受困群眾運回地,沖鋒舟繼續(xù)前進,到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數(shù)圖象如圖所示.假設營救群眾的時間忽略不計,水流速度和沖鋒舟在靜水中的速度不變.

1)請直接寫出沖鋒舟從地到地所用的時間.

2)求水流的速度.

3)沖鋒舟將地群眾安全送到地后,又立即去接應救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數(shù)關系式為,假設群眾上下船的時間不計,求沖鋒舟在距離地多遠處與救生艇第二次相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間的函數(shù)關系的圖象如圖. 根據(jù)圖象解決下列問題:

(1) 誰先出發(fā)?先出發(fā)多少時間?誰先到達終點?先到多少時間?

(2) 分別求出甲、乙兩人的行駛速度;

(3) 在什么時間段內(nèi),兩人均行駛在途中(不包括起點和終點)?在這一時間段內(nèi),請你根據(jù)下列情形,分別列出關于行駛時間x的方程或不等式(不化簡,也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,已知∠ADC=130°,則∠AOC的大小是(

A.80°
B.100°
C.60°
D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+b與x軸交于點A、B,且A點的坐標為(1,0),與y軸交于點C(0,1).

(1)求拋物線的解析式,并求出點B坐標;
(2)過點B作BD∥CA交拋物線于點D,連接BC、CA、AD,求四邊形ABCD的周長;(結(jié)果保留根號)
(3)在x軸上方的拋物線上是否存在點P,過點P作PE垂直于x軸,垂足為點E,使以B、P、E為頂點的三角形與△CBD相似?若存在請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案