如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BADCEABE,CFADF. 試說(shuō)明:(1)△CBE≌△CDF; (2)ABAD=2AF.

 

 

【答案】

證明見(jiàn)解析

【解析】(1)  ∵AC平分∠BADCEAB,CFAD

         ∴ CE=CF

         ∵ ∠ABC+∠CBE=180º

ABC+∠D=180°

∴∠CBE=∠D               ………………2分

在 △CBE 與△CDF

CBE=∠D

BEC=∠CFD

CE=CD

CBE≌△CDF(AAS)         ………………5分

(2) ∵ △CBE≌△CDF(AAS)

BE=DF

在 △AEC 與△AFC

CE=CF

AC=AC

AEC ≌△AFC(HL)     ………………8分

AE=AF

ABADAEAF  

ABAD=2AF          ………………10分

(1)根據(jù)角平分線的性質(zhì)可得到CE=CF,根據(jù)余角的性質(zhì)可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,從而利用AAS即可判定△CBE≌△CDF.

(2)已知EC=CF,AC=AC,則根據(jù)HL判定△ACE≌△ACF得AE=AF,最后證得ABAD=2AF.即可.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案