如圖所示,在正方形網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長均為1),將△OAB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),得到△OCD,則∠AOC的度數(shù)是________.

90°
分析:根據(jù)網(wǎng)格圖得到OD=OB=2,OC=OA=2,∠DOB=90°,由于△OAB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),得到△OCD,則有OB與OD是對(duì)應(yīng)邊,OA與OC是對(duì)應(yīng)邊,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠COA與∠DOB都等于旋轉(zhuǎn)角,則∠COA=∠DOB=90°.
解答:∵OD=OB=2,OC=OA=2,∠DOB=90°
而△OAB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),得到△OCD,
∴OB與OD是對(duì)應(yīng)邊,OA與OC是對(duì)應(yīng)邊,
∴∠COA=∠DOB=90°.
故答案為90°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了正方形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•本溪二模)在1×2的正方形網(wǎng)格格點(diǎn)上放三枚棋子,按如圖所示位置已放置了兩枚棋子,若第三枚棋子隨機(jī)放在其他格點(diǎn)上,則以這三枚棋子所在的格點(diǎn)為頂點(diǎn)的三角形是直角三角形的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖均為矩形;其主視圖和俯視圖在正方形方格網(wǎng)中是如圖所示2×3和3×3的格點(diǎn)矩形;請(qǐng)?jiān)诜礁裰挟嫵鏊淖笠晥D,并求該幾何體的全面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,A、B、C、D均在邊長為1的正方形網(wǎng)格格點(diǎn)上.
(1)求線段AB所在直線的解析式,并寫出當(dāng)0≤y≤2時(shí),自變量x的取值范圍;
(2)若把直線y=kx+b中的k叫做直線的斜率,那么直線AB和直線AD的斜率有什么關(guān)系?直線AB和直線CD的斜率有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,A、B、C、D均在邊長為1的正方形網(wǎng)格格點(diǎn)上.
(1)求線段AB所在直線的解析式,并寫出當(dāng)0≤y≤2時(shí),自變量x的取值范圍;
(2)若把直線y=kx+b中的k叫做直線的斜率,那么直線AB和直線AD的斜率有什么關(guān)系?直線AB和直線CD的斜率有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

一個(gè)幾何體的三視圖均為矩形;其主視圖和俯視圖在正方形方格網(wǎng)中是如圖所示2×3和3×3的格點(diǎn)矩形;請(qǐng)?jiān)诜礁裰挟嫵鏊淖笠晥D,并求該幾何體的全面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案