【題目】已知a滿足以下三個條件:①a是整數(shù);②關于x的一元二次方程ax2+4x20有兩個不相等的實數(shù)根;③反比例函數(shù)的圖象在第二、四象限.

1)求a的值.

2)求一元二次方程ax2+4x20的根.

【答案】(1)-1;(2) x12+,x22

【解析】

(1)先根據(jù)關于x的一元二次方程ax2+4x20有兩個不相等的實數(shù)根求出a的取值范圍,再由反比例函數(shù)的圖象在二、四象限得出a的取值范圍,由a為整數(shù)即可得出a的值;

(2)根據(jù)a的值得出方程,解方程即可得出結(jié)論.

解:(1)∵方程有兩個不相等的實數(shù)根,

∴△=16+8a0,得a>﹣2a≠0;

∵反比例函數(shù)圖象在二,四象限,

2a+10,得a<﹣,

∴﹣2a<﹣

a是整數(shù)且a≠0,

a=﹣1;

2)∵a=﹣1

∴一元二次方程為﹣x2+4x20,即:x24x+20

解得:x12+,x22

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+ax+b=0(b≠0)與x2+cx+d=0都有實數(shù)根,若這兩個方程有且只有一個公共根,且ab=cd,則稱它們互為“同根輪換方程”.如x2-x-6=0與x2-2x-3=0互為“同根輪換方程”.

(1)若關于x的方程x2+4x+m=0與x2-6x+n=0互為“同根輪換方程”,求m的值;

(2)已知方程①:x2+ax+b=0和方程②:x2+2ax+b=0,p、q分別是方程①和方程②的實數(shù)根,且p≠q,b≠0.試問方程①和方程②是否能互為“同根輪換方程”?如果能,用含a的代數(shù)式分別表示p和q;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是⊙O上一點,⊙O的半徑為,D、E分別是弦AC、BC上一動點,且OD=OE=,則AB的最大值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:

在綜合實踐課上,張老師讓同學們以“矩形的折疊”為主題開展數(shù)學活動,張老師拿著一張矩形紙片ABCD,其中AB=acm, AD=bcm, 如圖1,先沿對角線BD折疊,點C落在點E的位置,BEAD于點F.

操作發(fā)現(xiàn):

(1)“奮進”小組發(fā)現(xiàn)與BF的長度一定相等的線段是哪一條

(2)如圖2.“雄鷹”小組將圖1再折疊一次,使點D與點A重合,得到折痕GH,GHAD于點M,發(fā)現(xiàn)△DGH是等腰三角形,請你證明這個結(jié)論;

實踐探究:

(3)“創(chuàng)新”小組將自己準備的矩形紙片按照(2)中“雄鷹”小組的作法操作,發(fā)現(xiàn)點E和點G重合,,如圖3,試探究“創(chuàng)新”小組準備的矩形紙片中ab滿足的數(shù)量關系;

(4)”愛心小組在其他小組的基礎上提出問題:當ab滿足什么關系時,點GDE的中點?請你直接出ab滿足的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).

1)求證:AC=BD

2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點B的坐標;

(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;

(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.

當t為   秒時,PAD的周長最小?當t為   秒時,PAD是以AD為腰的等腰三角形?(結(jié)果保留根號)

點P在運動過程中,是否存在一點P,使PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B兩點的坐標分別為(2,0),(0,10),MAOB外接圓⊙C上的一點,且∠AOM=30°,則點M的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AM=AN.

(1)求證:RtABMRtAND

(2)線段MN與線段AD相交于T,若AT=,的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

同步練習冊答案