如圖,一個(gè)等邊三角形紙片,剪去一個(gè)角后得到一個(gè)四邊形,則圖中∠α+∠β的度數(shù)是( )
A.180° B.220° C.240° D.300°
C【考點(diǎn)】等邊三角形的性質(zhì);多邊形內(nèi)角與外角.
【專題】探究型.
【分析】本題可先根據(jù)等邊三角形頂角的度數(shù)求出兩底角的度數(shù)和,然后在四邊形中根據(jù)四邊形的內(nèi)角和為360°,求出∠α+∠β的度數(shù).
【解答】解:∵等邊三角形的頂角為60°,
∴兩底角和=180°﹣60°=120°;
∴∠α+∠β=360°﹣120°=240°;
故選C.
【點(diǎn)評】本題綜合考查等邊三角形的性質(zhì)及三角形內(nèi)角和為180°,四邊形的內(nèi)角和是360°等知識,難度不大,屬于基礎(chǔ)題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3) 拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
五個(gè)正方形按如圖放置在直線l上,其中第1、2、4個(gè)正方形的面積分別為2、5、4,則第5個(gè)正方形的面積S5=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,CE是△ABC的外角∠ACD的平分線,且CE交BA的延長線于點(diǎn)E,∠B=40°,∠E=30°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若點(diǎn)A(2,m)在x軸上,則點(diǎn)B(m﹣1,m+1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com