(2012•高淳縣一模)某校組織初三學(xué)生電腦技能競(jìng)賽,每班參加比賽的學(xué)生人數(shù)相同,競(jìng)賽成績(jī)分為A、B、C、D四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為100分,90分,80分,70分.將初三(1)班和(2)班的成績(jī)整理并繪制成統(tǒng)計(jì)圖如下.

(1)此次競(jìng)賽中(2)班成績(jī)?cè)贑級(jí)以上(包括C級(jí))的人數(shù)為
17
17
;
平均數(shù)(分) 中位數(shù)(分) 眾數(shù)(分)
(1)班 90 90
(2)班 88 100
(2)請(qǐng)你將表格補(bǔ)充完整:
(3)試運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí),從二個(gè)不同角度評(píng)價(jià)初三(1)班和初三(2)班的成績(jī).
分析:(1)先求出一班總?cè)藬?shù),再求二班成績(jī)?cè)贑級(jí)以上(包括C級(jí))的人數(shù);
(2)1班平均分=(A等級(jí)5人的總分+B等級(jí)9人的總分+C等級(jí)2人的總分+D等級(jí)4人的總分)÷20人;首先計(jì)算出2班A、B、C、D四等級(jí)人數(shù),再根據(jù)中位數(shù)的定義求解即可.
(3)只要答案符合題意即可.(答案不唯一)
解答:解:(1)此次競(jìng)賽二班成績(jī)?cè)贑級(jí)以上(包括C級(jí))的人數(shù)=(5+9+2+4)×(35%+5%+45%)=17(人);

(2)1班平均分:(5×100+9×90+2×80+4×70)÷20=87.5,
2班A等級(jí)人數(shù):20×45%=9(人),B等級(jí)人數(shù):20×5%=1(人),C等級(jí)人數(shù):20×35%=7(人),D等級(jí)人數(shù):20×15%=3(人),
把數(shù)據(jù)從大到小排列位置處于中間的是90分和80分,故中位數(shù)是:(90+80)÷2=85,
平均數(shù)(分) 中位數(shù)(分) 眾數(shù)(分)
(1)班 87.5 90 90
(2)班 88 85 100
(3)①?gòu)钠骄鶖?shù)的角度看兩班成績(jī)(2)班好一點(diǎn);從中位數(shù)的角度看一班比二班的成績(jī)好,所以一班成績(jī)好.
點(diǎn)評(píng):本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,以及平均數(shù)、中位數(shù)、眾數(shù)的定義及其應(yīng)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高淳縣一模)下列運(yùn)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高淳縣一模)《中華人民共和國(guó)道路交通管理?xiàng)l理》規(guī)定:“小汽車在城市街道公路上的行駛速度不得超過(guò)70km/h(即19.44m/s)”.如圖所示,已知測(cè)速站M到街道公路l的距離為90m,一輛小汽車在街道公路l上由東向西行駛,測(cè)得此車從點(diǎn)A行駛到點(diǎn)B所用的時(shí)間為6s,并測(cè)得A在M的北偏西27°方向上,B在M的北偏西60°方向上.求出此車從A到B的平均速度,并判斷此車是否超過(guò)限速.
(參考數(shù)據(jù):
3
≈1.73,sin27°≈0.45,cos27°≈0.89,tan27°≈0.50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高淳縣一模)已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是
AB
的中點(diǎn).過(guò)點(diǎn)D作CB的垂線,分別交CB、CA延長(zhǎng)線于點(diǎn)F、E.
(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高淳縣一模)如圖,將邊長(zhǎng)為a的正方形OABC繞頂點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<45°),得到正方形OA1B1C1.設(shè)邊B1C1與OC的延長(zhǎng)線交于點(diǎn)M,邊B1A1與OB交于點(diǎn)N,邊B1A1與OA的延長(zhǎng)線交于點(diǎn)E,連接MN.
(1)求證:△OC1M≌△OA1E;
(2)試說(shuō)明:△OMN的邊MN上的高為定值;
(3)△MNB1的周長(zhǎng)p是否發(fā)生變化?若發(fā)生變化,試說(shuō)明理由;若不發(fā)生變化,請(qǐng)給予證明,并求出p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案