【題目】如圖,四邊形ABCO為矩形,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且點(diǎn)B的坐標(biāo)為(2,1),將此矩形繞點(diǎn)O逆時針旋轉(zhuǎn)90°得矩形DEFO,拋物線y=-x2+bx+c過B、E兩點(diǎn).
(1)求此拋物線的函數(shù)解析式.
(2)將矩形DEFO向右平移,當(dāng)點(diǎn)E的對應(yīng)點(diǎn)E’在拋物線上時,求線段DF掃過的面積.
(3)若將矩形ABCO向上平移d個單位長度后,能使此拋物線的頂點(diǎn)在此矩形的邊上,求d的值.
【答案】(1);(2)平行四邊形DD’F’F的面積為;(3) 平移的距離或.
【解析】
(1)直接利用待定系數(shù)法即可解決問題.
(2)由平移可知DF掃過的面積為平行四邊形DD’F’F的面積.根據(jù)點(diǎn)E向右平移后的對應(yīng)點(diǎn)E’在拋物線上,可得E’的坐標(biāo),從而求出平移的距離即可求出面積。
(3)求出拋物線頂點(diǎn)坐標(biāo),點(diǎn)B坐標(biāo),即可解決問題.
⑴由題意可知,點(diǎn)E的坐標(biāo)為(-1,2).
把(2,1),(-1,2)分別代入,
可得,解得.
∴此拋物線的解析式為.
⑵如圖,由平移可知DF掃過的面積為平行四邊形DD’F’F的面積.
當(dāng)點(diǎn)E向右平移后的對應(yīng)點(diǎn)E’在拋物線上時,
有,則,解得,,
∴E’(),
∴,
∴平行四邊形DD’F’F的面積為.
⑶∵,
∴拋物線的頂點(diǎn)坐標(biāo)為(),
∵B(2,1),
∴平移的距離或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O
上一點(diǎn),且∠AED=45°。
(1)判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為6cm,AE=10cm,求∠ADE的正弦值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,過點(diǎn)C作CE⊥BC交對角線BD于點(diǎn)E,且DE=CE,若,則DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的內(nèi)切圓⊙O與BC,CA,AB分別相切于點(diǎn)D,E,F,且AB=9 cm,BC=14 cm,CA=13 cm,則AF的長為 __________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣安市某樓盤準(zhǔn)備以每平方米6000元的均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米4860元的均價開盤銷售.
(1)求平均每次下調(diào)的百分率.
(2)某人準(zhǔn)備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,一次性送裝修費(fèi)每平方米80元,試問哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com