【題目】已知,△ ABC 在直角坐標系內,三個頂點的坐標分別為A(-2,2)、B(-1,0)、C(0,1)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ ABC 關于 y 軸的軸對稱圖形△ A1B1C1;
(2)一點 O 為位擬中心,在網(wǎng)格內畫出所有符合條件的△ A2B2C2,使△ A2B2C2 與△ A1B1C1 位擬,且位擬比為 2:1;
(3) △ A1B1C1 與△ A2B2C2 的面積比為 .
【答案】(1)見解析;(2)見解析;(3);
【解析】
(1)由△ABC關于y軸的軸對稱圖形△A1B1C1,根據(jù)軸對稱的性質,可求得△A1B1C1各點的坐標,繼而畫出△A1B1C1;
(2)由△A2B2C2與△A1B1C1位似,且位似比為2:1;根據(jù)位似的性質,可求得△A2B2C2各點的坐標,繼而畫出△A2B2C2;
(3)由相似三角形的面積比等于相似比的平方,即可求得△A1B1C1與△A2B2C2的面積比.
(1)如圖:
A1(2,2),B1(1,0),C1(0,1);
(2)如圖:A1(4,4),B1(2,0),C1(0,2)或A1(-4,-4),B1(-2,0),C1(0,-2);
(3)∵△A2B2C2與△A1B1C1位似,且位似比為2:1,
∴△A1B1C1與△A2B2C2的面積比=()2=1:4.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民晚飯后1小時內的生活方式,調查小組設計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調查了該市部分市民,并根據(jù)調查結果繪制成如下統(tǒng)計圖.
根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次共調查了________名市民;
(2)補全條形統(tǒng)計圖;
(3)該市共有480萬市民,估計該市市民晚飯后1小時內鍛煉的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a-2b+c>0;④2c<3b;⑤當m≤x≤m+1時,函數(shù)的最大值為a+b+c,則0≤m≤1;其中正確的結論有( 。
A. 2 個 B. 3 個 C. 4 個 D. 5 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為30,點M為線段AB上一動點,將等邊△ABC沿過點M的直線折疊,使點A落在直線BC上的點D處,且BD∶DC=1∶4,折痕與直線AC交于點N,則AN的長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù) y=nx+2(n≠0)的圖像與反比例函數(shù) y (m≠0)在第一象限內的圖像交于點 A,與 x 軸交于點 B,線段 OA=5,C 為 x 軸正半軸上一點,且 sin AOC .
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ AOB 的面積;
(3)請直接寫出不等式 nx 2 的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線 yx2 bxc經(jīng)過△ ABC 的三個頂點,其中點 A(0,1),點 B(9,10),AC∥x 軸,點 P 是直線 AC 下方拋物線上的動點,過點 P 且與 y 軸平行的直線 l 與直線 AB、AC 分別交于點 E、F.
(1)求拋物線的函數(shù)表達式;
(2)如圖 1,當四邊形 AECP 的面積最大時,求點 P 的坐標和四邊形 AECP 的最大面積;
(3)如圖 2,當點 P 為拋物線的頂點時,在直線 AC 上是否存在點 Q,使得以 C,P,Q 為頂點的三角形與△ ABC 相似?若存在,請直接寫出點 Q 的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖,點M,N把線段AB分割成AM.MN,NB,若以AM,MN,NB為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股分割點.
(1)已知M、N線段AB分割成AM,MN,NB,若,則點M,N是線段AB的勾股分割點嗎?請說明理由;
(2)已知點M、N是線段AB的勾股分割點,且AM為直角邊,若,求BN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com