如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.

(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
(1)證明見解析;(2)y=-x2-x+4;頂點E是否在直線CD上,理由見解析;P1(-10,-6),P2(10,-36).

試題分析:(1)連接O′C,由CD是⊙O的切線,可得O′C⊥CD,則可證得O′C∥AD,又由O′A=O′C,則可證得∠CAD=∠CAB;
(2)①首先證得△CAO∽△BCO,根據(jù)相似三角形的對應(yīng)邊成比例,可得OC2=OA•OB,又由tan∠CAO=tan∠CAD=,則可求得CO,AO,BO的長,然后利用待定系數(shù)法即可求得二次函數(shù)的解析式;
②首先證得△FO′C∽△FAD,由相似三角形的對應(yīng)邊成比例,即可得到F的坐標(biāo),求得直線DC的解析式,然后將拋物線的頂點坐標(biāo)代入檢驗即可求得答案;
③根據(jù)題意分別從PA∥BC與PB∥AC去分析求解即可求得答案,小心漏解.
試題解析:(1)證明:連接O′C,

∵CD是⊙O′的切線,
∴O′C⊥CD,
∵AD⊥CD,
∴O′C∥AD,
∴∠O′CA=∠CAD,
∵O′A=O′C,
∴∠CAB=∠O′CA,
∴∠CAD=∠CAB;
(2)解:①∵AB是⊙O′的直徑,
∴∠ACB=90°,
∵OC⊥AB,
∴∠CAB=∠OCB,
∴△CAO∽△BCO,
,
即OC2=OA•OB,
∵tan∠CAO=tan∠CAD=,
∴AO=2CO,
又∵AB=10,
∴OC2=2CO(10-2CO),
解得CO1=4,CO2=0(舍去),
∴CO=4,AO=8,BO=2
∵CO>0,
∴CO=4,AO=8,BO=2,
∴A(-8,0),B(2,0),C(0,4),
∵拋物線y=ax2+bx+c過點A,B,C三點,
∴c=4,
由題意得:

解得:
∴拋物線的解析式為:y=-x2-x+4;
②設(shè)直線DC交x軸于點F,
∴△AOC≌△ADC,
∴AD=AO=8,
∵O′C∥AD,
∴△FO′C∽△FAD,

∴O′F•AD=O′C•AF,
∴8(BF+5)=5(BF+10),
∴BF=,F(xiàn)(,0);
設(shè)直線DC的解析式為y=kx+m,

解得:,
∴直線DC的解析式為y=-x+4,
由y=-x2-x+4=-(x+3)2+得頂點E的坐標(biāo)為(-3,),
將E(-3,)代入直線DC的解析式y(tǒng)=--x+4中,
右邊=-×(-3)+4==左邊,
∴拋物線頂點E在直線CD上;
(3)存在,P1(-10,-6),P2(10,-36).
①∵A(-8,0),C(0,4),
∴過A、C兩點的直線解析式為y=x+4,
設(shè)過點B且與直線AC平行的直線解析式為:y=x+b,把B(2,0)代入得b=-1,
∴直線PB的解析式為y=x-1,

解得,(舍去),
∴P1(-10,-6).
②求P2的方法應(yīng)為過點A作與BC平行的直線,
可求出BC解析式,進(jìn)而求出與之平行的直線的解析式,
與求P1同法,可求出x1=-8,y1=0(舍去);x2=10,y2=-36.
∴P2的坐標(biāo)(10,-36).
考點: 二次函數(shù)綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-x2向上平移2個單位后所得的拋物線表達(dá)式是               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過原點O,且該圖象的對稱軸是直線x=,若函數(shù)值y>0.則x取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖象如圖所示,給出下列說法:

>0;
=0;

④當(dāng)時,函數(shù)y隨x的增大而增大;
⑤當(dāng)時,
其中,正確的說法有          .(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的解析式為y=﹣(x+3)2+1,則它的頂點坐標(biāo)是( 。
A.(﹣3,1)B.(3,1)C.(3,﹣1)D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線過點,且與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.點D的坐標(biāo)為,連接CA,CB,CD.

(1)求證:;
(2)是第一象限內(nèi)拋物線上的一個動點,連接DP交BC于點E.
①當(dāng)△BDE是等腰三角形時,直接寫出點E的坐標(biāo);
②連接CP,當(dāng)△CDP的面積最大時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個二次函數(shù)的圖像經(jīng)過點(4,1)和(,6).
(1)求這個二次函數(shù)的解析式;
(2)求這個二次函數(shù)圖像的頂點坐標(biāo)和對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某跳水運(yùn)動員進(jìn)行10m跳臺跳水的訓(xùn)練時,身體(看成一點)在空中的運(yùn)動路線是如圖所示坐標(biāo)系下經(jīng)過原點O的一條拋物線(圖中標(biāo)出的數(shù)據(jù)為己知條件).在跳某個規(guī)定動作時,正確情況下,該運(yùn)動員在空中的最高處距水面m,入水處與池邊的距離為4m, 同時,運(yùn)動員在距水面高度為5m以前,必須完成規(guī)定的翻騰動作,并調(diào)整好入水姿勢,否則就會出現(xiàn)失誤.

(l)求這條拋物線的解析式;
(2)在某次試跳中,測得運(yùn)動員在空中的運(yùn)動路線是(1)中的拋物線,且運(yùn)動員在空中調(diào)整好入水姿勢時,距池邊的水平距離為,問:此次跳水會不會失誤?通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=﹣3x2﹣6x+5的圖象的頂點坐標(biāo)是(  )
A.(﹣1,8) B.(1,8) C.(﹣1,2)D.(1,﹣4)

查看答案和解析>>

同步練習(xí)冊答案