△ABC中,∠BAC=90°,AD⊥BC于D,圖中共有
3
3
對相似三角形.
分析:根據(jù)等角的余角相等可得:∠ACD=∠CBD,利用兩角法可確定圖中的相似三角形.
解答:解:∵∠ACD+∠DCB=90°,∠CBD+∠DCB=90°,
∴∠ACD=∠CBD,
又∵∠ADC=∠CDB=90°,
∴△ACD∽△CBD,
結(jié)合圖形可得:△ACD∽△ABC、△CBD∽△ABC.
綜上可得:共3對相似三角形.
故答案為:3.
點評:本題考查了相似三角形的判定,解答本題的關(guān)鍵是熟練掌握相似三角形的判定方法,最常用的就是兩角法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

18、如圖,在△ABC中,∠BAC=60°,BD、CE分別是邊AC,AB上的高,BD、CE相交于點O,則∠BOC的度數(shù)是
120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,∠BAC=60°,AB=2AC.點P在△ABC內(nèi),且PA=
3
,PB=5,PC=2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,則AD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

93、如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,那么△AEF是等腰三角形嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•達州)通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線.
根據(jù)
SAS
SAS
,易證△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當∠B與∠D滿足等量關(guān)系
∠B+∠D=180°
∠B+∠D=180°
時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

查看答案和解析>>

同步練習冊答案