【題目】如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點F作GF⊥AF交AD于點G,設(shè).
(1)求證:AE=GE;
(2)當(dāng)點F落在AC上時,用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.
【答案】(1)證明見解析;(2)= ;(3)n=16或 .
【解析】
試題分析:(1)因為GF⊥AF,由對稱易得AE=EF,則由直角三角形的兩個銳角的和為90度,且等邊對等角,即可證明E是AG的中點;(2)可設(shè)AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC , 則,因為AB=DC,且DA,AE已知表示出來了,所以可求出AB,即可解答;(3)求以點F,C,G為頂點的三角形是直角三角形時的n,需要分類討論,一般分三個,∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進行分析解答.
試題解析:(1)證明:由對稱得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG.
(2)解:設(shè)AE=a,則AD=na,當(dāng)點F落在AC上時(如圖1),由對稱得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC ,∴
∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB=,∴= =,∴=.
(3)解:設(shè)AE=a,則AD=na,由AD=4AB,則AB=.
當(dāng)點F落在線段BC上時(如圖2),EF=AE=AB=a,此時,∴n=4,∴當(dāng)點F落在矩形外部時,n>4.
∵點F落在矩形的內(nèi)部,點G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,則點F落在AC上,由(2)得=,∴n=16.
若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴ ,∴AB·DC=DG·AE,即.
解得 n=或n=<4(不合題意,舍去),∴當(dāng)n=16或 時,以點F,C,G為頂點的三角形是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了了解氣溫對用電量的影響,對去年自己家的每月用電量和當(dāng)?shù)貧鉁剡M行了統(tǒng)計.當(dāng)?shù)厝ツ昝吭碌钠骄鶜鉁厝鐖D1,小明家去年月用電量如圖2.
根據(jù)統(tǒng)計表,回答問題:
(1)當(dāng)?shù)厝ツ暝缕骄鶜鉁氐淖罡咧、最低值各為多少?相?yīng)月份的用電量各是多少?
(2)請簡單描述月用電量與氣溫之間的關(guān)系;
(3)假設(shè)去年小明家用電量是所在社區(qū)家庭年用電量的中位數(shù),據(jù)此他能否預(yù)測今年該社區(qū)的年用電量?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:是的直徑,點在上,是的切線,于點是延長線上的一點,交于點,連接.
(1)求證:平分.
(2)若,.
①求的度數(shù).
②若的半徑為,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=12,BC=5,若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校羽毛球訓(xùn)練隊共有8名隊員,他們的年齡(單位:歲)分別為:12,13,13,14,12,13,15,13,則他們年齡的眾數(shù)為( )
A.12
B.13
C.14
D.15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com