如圖,直角梯形ABCD中,AD∥BC,∠A=90°,,交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:;
(2)若,求CF的長.
(1)證明見解析(2)5
【解析】(1)證明:過D作DG⊥BC于G.
由已知可得,四邊形ABGD為正方形. …………1分
∵DE⊥DC,
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC . ………………………3分
又∵∠A=∠DGC,且AD=GD,
∴△ADE≌△GDC .
∴DE=DC,且AE=GC. ……………………4分
在△EDF和△CDF中,
∠EDF=∠CDF,DE=DC,DF為公共邊,
∴△EDF≌△CDF.
∴EF=CF . ……………………………………………6分
(2)∵AD=3AE, ∴. ………………………………………7分
設(shè),則,BE=6-2=4.
由勾股定理,得 .
解之,得 , 即.
∴CF = EF=5……………………………10分
(1)過D作DG⊥BC于G,由已知可得四邊形ABGD為正方形,然后利用正方形的性質(zhì)和已知條件證明△ADE≌△GDC,接著利用全等三角形的性質(zhì)證明△EDF≌△CDF,
(2)由(1)得,設(shè),利用勾股定理求解
|
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com