如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
(1)證明見解析;
(2)四邊形ADCF是菱形,證明見解析.

試題分析:(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案;
(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.
(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AFE和△DBE中:
 ,
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.
(2)四邊形ADCF是菱形,
證明:AF∥BC,AF=DC,
∴四邊形ADCF是平行四邊形,
∵AC⊥AB,AD是斜邊BC的中線,
∴AD=BC=DC,
∴平行四邊形ADCF是菱形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G.求證:AE=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,M、N是正方形ABCD邊AB、CD上兩動(dòng)點(diǎn),連接MN,將四邊形BCNM沿MN折疊,使點(diǎn)B落在AD邊上點(diǎn)E處、點(diǎn)C落在點(diǎn)F.
(1)求證:BE平分∠AEF;
(2)求證:CEDG=2AB(注:CEDG表示△EDG的周長(zhǎng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)E、C在線段BF上,BE=CF,AB∥DE,AB=DE.
求證:AC∥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△OAB中,OA=OB=4,∠A=30°,AB與⊙O相切于點(diǎn)C,則圖中陰影部分的面積為
         .(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=8,BD=6,則四邊形EFGH的面積為(   )

A.14      B.12       C.24      D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

無論k取任何實(shí)數(shù),直線y=kx-3k+2上總有一個(gè)定點(diǎn)到原點(diǎn)的距離不變,這個(gè)距離為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,網(wǎng)格中的小正方形邊長(zhǎng)均為1,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則AB邊上的高為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

八邊形的內(nèi)角和等于____________°,六邊形的外角和等于____________°.

查看答案和解析>>

同步練習(xí)冊(cè)答案