下列各式:
1
2
(1-x),
4x
π-3
,
x2-y2
2
,
1+a
b
5x2
y
其中分式共有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)
分析:判斷分式的依據(jù)是看分母中是否含有字母,如果含有字母則是分式,如果不含有字母則不是分式.
解答:解:
1
2
(1-x),
4x
π-3
x2-y2
2
的分母中均不含有字母,因此不是分式,是整式;
1+a
b
5x2
y
分母中含有字母,因此是分式.
故選A.
點(diǎn)評(píng):本題主要考查分式的定義,注意π不是字母,是常數(shù),所以
4x
π-3
不是分式,是整式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、觀察下列各式;
12+1=1×2
22+2=2×3
33+3=3×4

請(qǐng)把你猜想到的規(guī)律用自然數(shù)n表示出來
n2+n=n(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

33、觀察下列各式:
12+1=1×2
22+2=2×3
32+3=3×4

請(qǐng)你將猜想到的規(guī)律用自然數(shù)n(n≥1)表示出來
n2+n=n(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解并回答問題.
(1)觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
,
1
12
=
1
3×4
=
1
3
-
1
4
,…
(2)找出規(guī)律,并計(jì)算:
1
2
+
1
6
+
1
12
+…+
1
(n-1)n
+
1
n(n+1)

(3)解方程:
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解并回答問題.
(1)觀察下列各式:
1
2
=
1
1×2
=
1
1
-
1
2
,
1
6
=
1
2×3
=
1
2
-
1
3
,
1
12
=
1
3×4
=
1
3
-
1
4
1
20
=
1
4×5
=
1
4
-
1
5
,…
(2)請(qǐng)你猜想出表示(1)中的特點(diǎn)的一般規(guī)律,用含x(x表示整數(shù))的等式表示
1
x(x+1)
=
1
x
-
1
x+1
1
x
-
1
x+1

(3)請(qǐng)利用上述規(guī)律,解方程
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式:12+1=1×2=2;22+2=2×3=6;32+3=3×4=12
試猜想992+99=
99
99
×
100
100
=
9900
9900

查看答案和解析>>

同步練習(xí)冊(cè)答案