精英家教網 > 初中數學 > 題目詳情
如圖,A是以BC為直徑的⊙O上一點,于點D,AD⊥BC過點B作⊙O的切線,與CA的延長線相交于點E,G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是⊙O的切線;
(3)若FG=BF,且⊙O的半徑長為,求BD和FG的長度.

【答案】分析:(1)根據切線判定知道EB⊥BC,而AD⊥BC,從而可以確定AD∥BE,那么△BFC∽△DGC,又G是AD的中點,就可得出結論BF=EF.
(2)要證PA是⊙O的切線,就是要證明∠PAO=90°連接AO,AB,根據第1的結論和BE是⊙O的切線和直角三角形的等量代換,就可得出結論.
(3)點F作FH⊥AD于點H,根據前兩問的結論,利用三角形的相似性和勾股定理,可以求出BD和FG的長度.
解答:(1)證明:∵BC是⊙O的直徑,BE是⊙O的切線,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∵△BFC∽△DGC,△FEC∽△GAC,


∵G是AD的中點,
∴DG=AG.
∴BF=EF.

(2)證明:連接AO,AB,
∵BC是⊙O的直徑,
∴∠BAC=90°.
在Rt△BAE中,由(1),知F是斜邊BE的中點,
∴AF=FB=EF.
∴∠FBA=∠FAB.
又∵OA=OB,
∴∠ABO=∠BAO.
∵BE是⊙O的切線,
∴∠EBO=90°.
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是⊙O的切線.

(3)解:過點F作FH⊥AD于點H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC.
由(2),知∠FBA=∠BAF,
∴BF=AF.
由已知,有BF=FG,
∴AF=FG,即△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH.
∵DG=AG,
∴DG=2HG.

∵FH∥BD,BF∥AD,∠FBD=90°,
∴四邊形BDHF是矩形,BD=FH.
∵FH∥BC,易證△HFG∽△DCG,


∵⊙O的半徑長為3,
∴BC=6

解得BD=2
∴BD=FH=2

∴CF=3FG.
在Rt△FBC中,
∵CF=3FG,BF=FG,
∴CF2=BF2+BC2∴(3FG)2=FG2+(62
解得FG=3(負值舍去)
∴FG=3.
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、如圖有一個矩形花壇ABCD,有個別人貪圖方便,從E點直插過去到C點,已知BE=7米,BC=24米,那么這些人以踐踏花草為代價,僅僅是只少走了
6
米的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,平面直角坐標系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點D是線段OC上一點,過點D作DE⊥AD交直線BC于點E,以A、D、E為頂點作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點A坐標為(0,4),點C坐標為(7,0).
①當點D的坐標為(5,0)時,拋物線y=ax2+bx+c過A、F、B三點,求點F的坐標及a、b、c的值;
②若點D(k,0)是線段OC上任意一點,點F是否還在①中所求的拋物線上?如果在,請說明理由;如果不在,請舉反例說明;
(3)若點A的坐標是(0,m),點C的坐標是(n,0),當點D在線段OC上運動時,是否也存在一條拋物線,使得點F都落在該拋物線上?若存在,請直接用含m精英家教網、n的代數式表示該拋物線;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關系是
CQ∥BE
CQ∥BE
,BQ的長是
3
3
dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC=x,BQ=y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸:在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

科目:初中數學 來源:2011-2012學年浙江省金華四中九年級畢業(yè)生學業(yè)考試模擬數學卷(帶解析) 題型:解答題

如圖1,在等腰梯形ABCO中,ABCOEAO的中點,過點EEFOCBCF,AO=4,OC=6,∠AOC=60°.現把梯形ABCO放置在平面直角坐標系中,使點O與原點重合,OCx軸正半軸上,點A,B在第一象限內.
(1)求點E的坐標及線段AB的長;
(2)點P為線段EF上的一個動點,過點PPMEFOC于點M,過MMNAO交折線ABC于點N,連結PN,設PE=x.△PMN的面積為S.
①求S關于x的函數關系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設運動時間為t秒,運動后的直角梯形為EDGH′(如圖3);試探究:在運動過程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時間t的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2012屆浙江省九年級畢業(yè)生學業(yè)考試模擬數學卷(解析版) 題型:解答題

如圖1,在等腰梯形ABCO中,ABCO,EAO的中點,過點EEFOCBCF,AO=4,OC=6,∠AOC=60°.現把梯形ABCO放置在平面直角坐標系中,使點O與原點重合,OCx軸正半軸上,點A,B在第一象限內.

(1)求點E的坐標及線段AB的長;

(2)點P為線段EF上的一個動點,過點PPMEFOC于點M,過MMNAO交折線ABC于點N,連結PN,設PE=x.△PMN的面積為S.

①求S關于x的函數關系式;

②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.現在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設運動時間為t秒,運動后的直角梯形為EDGH′(如圖3);試探究:在運動過程中,等腰梯ABCO與直角梯形EDGH′重合部分的面積y與時間t的函數關系式.

 

查看答案和解析>>

同步練習冊答案