A(4, -5)在第     象限,關(guān)于x軸對稱點的坐標(biāo)是        . (每格1分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•貴陽模擬)閱讀下列材料:
已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y=-
2x
的圖象上.小明對上述問題進行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形一定有兩個,如圖所示,并且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)若P點坐標(biāo)為(1,0),請你寫出:M的坐標(biāo)是
(2,-1)
(2,-1)
;
(2)若點P的坐標(biāo)為(m,0),求直線M1M的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正比例函數(shù)y=
1
2
x的圖象與反比例函數(shù)y=
k
x
(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△AOM的面積為1,點B(-1,t)為反比例函數(shù)在第三象限圖象上的點.
(1)求反比例函數(shù)的解析式;
(2)試求出點A、點B的坐標(biāo);
(3)在y軸上求一點P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)若拋物線y=x2+(2m-1)x+m2-1與x軸交于兩個不同的整數(shù)點,求m的整數(shù)值;
(2)在(1)問條件下,若拋物線頂點在第三象限,試確定拋物線的解析式;
(3)若點M(x1,y1)與點N(x1+k,y2)在(2)中拋物線上 (點M、N不重合),且y1=y2.求代數(shù)式x12
16k+1
+6x1+5-k
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•建寧縣質(zhì)檢)如圖:已知拋物線y=-
1
m
x2+(1-
2
m
)x+2
(m>0)與x軸相交于點B、C,與y軸相交于點A,且點B在點C的左側(cè).
(1)若該拋物線過點M(2,2),求這個拋物線的解析式;
(2)在(1)的條件下,請在第四象限內(nèi)的該拋物線上找到一點P,使△POC的面積等于△ABC面積的
4
3
,求出P點坐標(biāo);
(3)在(1)的條件下,請在拋物線的對稱軸上找到一點H,使BH+AH最小,并求出H點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在正方形網(wǎng)格中建立如圖所示的坐標(biāo)系,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1,并直接寫出點A1的坐標(biāo)(要求:A與A1,B與B1,C與C1相對應(yīng));
(2)在第(1)題的結(jié)果下,連接AA1,BB1,求四邊形AA1B1B的面積.

查看答案和解析>>

同步練習(xí)冊答案