(2008•海口一模)如圖,半徑為2的⊙O與含有30°角的直角三角板ABC的AC邊切于點A,將直角三角板沿CA邊所在的直線向左平移,當平移到AB與⊙O相切時,該直角三角板平移的距離為
2
3
2
3
分析:根據(jù)題意畫出平移后的圖形,如圖所示,設平移后的△A′B′C′與圓O相切于點D,連接OD,OA,AD,過O作OE⊥AD,根據(jù)垂徑定理得到E為AD的中點,由平移前AC與圓O相切,切點為A點,根據(jù)切線的性質得到OA與AC垂直,可得∠OAA′為直角,由A′D與A′A為圓O的兩條切線,根據(jù)切線長定理得到A′D=A′A,再根據(jù)∠B′A′C′=60°,根據(jù)有一個角為60°的等腰三角形為等邊三角形可得出三角形A′AD為等邊三角形,平移的距離AA′=AD,且∠DAA′=60°,由∠OAA′-∠DAA′求出∠OAE為30°,在直角三角形AOE中,由銳角三角函數(shù)定義表示出cos30°=
AE
OA
,把OA及cos30°的值代入,求出AE的長,由AD=2AE可求出AD的長,即為平移的距離.
解答:解:根據(jù)題意畫出平移后的圖形,如圖所示:
設平移后的△A′B′C′與圓O相切于點D,連接OD,OA,AD,
過O作OE⊥AD,可得E為AD的中點,
∵平移前圓O與AC相切于A點,
∴OA⊥A′C,即∠OAA′=90°,
∵平移前圓O與AC相切于A點,平移后圓O與A′B′相切于D點,
即A′D與A′A為圓O的兩條切線,
∴A′D=A′A,又∠B′A′C′=60°,
∴△A′AD為等邊三角形,
∴∠DAA′=60°,AD=AA′=A′D,
∴∠OAE=∠OAA′-∠DAA′=30°,
在Rt△AOE中,∠OAE=30°,AO=2,
∴AE=AO•cos30°=
3
,
∴AD=2AE=2
3
,
∴AA′=2
3
,
則該直角三角板平移的距離為2
3

故答案為:2
3
點評:此題考查了切線的性質,切線長定理,等邊三角形的判定與性質,銳角三角函數(shù)定義,垂徑定理,以及平移的性質,是一道多知識點的綜合性題,根據(jù)題意畫出相應的圖形,并作出適當?shù)妮o助線是本題的突破點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2008•?谝荒#﹪矣斡局行--“水立方”是北京2008年奧運會場館之一,它的外層膜的展開面積約為260000平方米,將260000用科學記數(shù)法表示為2.6×10n,則n的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•?谝荒#┯嬎悖-2a2)•3a3的結果,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•海口一模)已知-1是關于x的方程x+2a=0的解,則a的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•海口一模)如圖,在一個長方體上放著一個小正方體,這個組合體的左視圖是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•海口一模)若A(x1,-3)、B(x2,-2)、C(x3,1)三點都在函數(shù)y=
6
x
的圖象上,則x1、x2、x3的大小關系是( 。

查看答案和解析>>

同步練習冊答案