【題目】計算
(1).
(2)(﹣2a)3﹣(﹣a)(3a)2.
(3)(x+2)2﹣(x﹣1)(x﹣2).
(4)(a+b)2(a﹣b)2.
(5)(a﹣3)(a+3)(a2+9).
(6)(m﹣2n+3)(m+2n﹣3).
(7).
(8).
(9).
【答案】(1)-1;(2)a3;(3)7x+2;(4)a4﹣2a2b2+b4;(5)a4﹣81;(6)m2﹣4n2﹣9+12n;(7)3﹣3;(8)﹣2;(9)5﹣
【解析】
(1)直接利用乘方運算、零指數(shù)冪的性質(zhì)以及負整數(shù)指數(shù)冪的性質(zhì)分別化簡得出答案;
(2)直接利用積的乘方運算法則化簡,進而得出答案;
(3)直接利用整式的乘法運算法則計算得出答案;
(4)直接利用積的乘方和乘法公式計算得出答案;
(5)直接利用乘法公式計算得出答案;
(6)將原式變形,然后利用乘法公式計算得出答案;
(7)直接利用算術平方根、立方根以及負整數(shù)指數(shù)冪的性質(zhì)分別化簡得出答案;
(8)直接利用絕對值、零指數(shù)冪的性質(zhì)、二次根式的性質(zhì)分別化簡得出答案;
(9)直接利用乘法公式計算得出答案.
(1)原式=﹣4+1+2=﹣1;
(2)原式=﹣8a3+9a3=a3;
(3)原式=x2+4x+4﹣(x2﹣3x+2)=7x+2;
(4)原式=(a2﹣b2)2=a4﹣2a2b2+b4;
(5)原式=(a2﹣9)(a2+9)=a4﹣81;
(6)原式=[m﹣(2n﹣3)][m+(2n﹣3)]=m2﹣(2n﹣3)2=m2﹣4n2﹣9+12n;
(7)原式=2﹣3+=3﹣3;
(8)原式=﹣1+1﹣6×=﹣2;
(9)原式=4﹣5+4+2﹣4﹣=5﹣.
科目:初中數(shù)學 來源: 題型:
【題目】(1)請你畫出函數(shù)y=x2-4x+10的圖象,由圖象你能發(fā)現(xiàn)這個函數(shù)具有哪些性質(zhì)?
(2)通過配方變形,說出函數(shù)y=-2x2+8x-8的圖象的開口方向、對稱軸、頂點坐標,這個函數(shù)有最大值還是最小值?這個值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時針旋轉(zhuǎn)一定角度后與△ADE重合,且點C恰好成為AD的中點.
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,垂足分別為E、F,且AB=CD.
(1)△ABF與△CDE全等嗎?為什么?
(2)求證:EG=FG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,,cm,cm,若以C為圓心,以2cm為半徑作圓,則點A在⊙C_____;點B在⊙C________;若以AB為直徑作⊙O,則點C在⊙O_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊的邊長為,是邊上的動點,交邊于點,在邊上取一點,使,連接.
(1)請直接寫出圖中與線段相等的兩條線段;(不再另外添加輔助線)
(2)探究:當點在什么位置時,四邊形是平行四邊形?并判斷四邊形是什么特殊的平行四邊形,請說明理由;
(3)在(2)的條件下,以點為圓心,為半徑作圓,根據(jù)與平行四邊形四條邊交點的總個數(shù),求相應的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在小正方形組成的的網(wǎng)格紙中,四邊形ABCD和四邊形A2B2C2D2的位置如圖所示.
(1)現(xiàn)把四邊形ABCD繞C點按順時針方向旋轉(zhuǎn)90°,畫出相應的圖形A1B1C1D1,
(2)若四邊形A1B1C1D1平移后,與四邊形A2B2C2D2成軸對稱,寫出滿足要求的一種平移方法,并畫出平移后的圖形A3B3C3D3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把向上平移4個單位長度,再向右平移3個單位長度得,其中,,.
(1)在圖上畫出;
(2)寫出點,,的坐標;
(3)請直接寫出線段在兩次平移中掃過的總面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com