如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始沿AD邊向D以3cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以1cm/s的速度運(yùn)動(dòng),點(diǎn)P、Q分別從A、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t (s).
⑴當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
①當(dāng)t為何值時(shí),以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個(gè)三角形;②當(dāng)t為何值時(shí),四邊形PQCD為等腰梯形.
⑵若點(diǎn)P從點(diǎn)A開(kāi)始沿射線AD運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P也隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),以P、Q、C、D為頂點(diǎn)的四邊形是平行四邊形.
(1)①t=0s或t=8s時(shí);②t=7s;(2)t=6s或t=12s時(shí).
【解析】
試題分析:(1)①能組成三角形,則需要有三條邊,可得當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)與點(diǎn)P與點(diǎn)D重合時(shí)兩種情況可組成三角形,求解即可得到t的值;
②由BC-CD=2cm,可知當(dāng)CQ-PD=4cm時(shí),四邊形PQCD為等腰梯形,列方程求解即可;
(2)根據(jù)題意可知:當(dāng)P在線段AD上,則當(dāng)PD=CQ時(shí),四邊形PQCD為平行四邊形,P在線段AD的延長(zhǎng)線上,則當(dāng)PD=CQ時(shí),四邊形DQCP為平行四邊形,所以列方程求解即可.
(1)①根據(jù)題意得:
當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)能構(gòu)成一個(gè)三角形,此時(shí)t=0,
∵點(diǎn)P到達(dá)D點(diǎn)需:8(s),
點(diǎn)Q到達(dá)B點(diǎn)需:26(s),
∴當(dāng)點(diǎn)P與點(diǎn)D重合時(shí)能構(gòu)成一個(gè)三角形,此時(shí)t=8s;
故當(dāng)t=0或8s時(shí),以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個(gè)三角形;
②∵BC-AD=2cm,
過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E,
∵當(dāng)PQ=CD時(shí),四邊形PQCD為等腰梯形,
∴△PFQ≌△DCE,EF=PD,
∴QF=CE=2cm,
∴當(dāng)CQ-PD=QF+CE=4cm時(shí),四邊形PQCD為等腰梯形,
∴t-(24-3t)=4,
∴t=7(s),
∴當(dāng)t=7s時(shí),四邊形PQCD為等腰梯形;
(2)如果P在線段AD上,則當(dāng)PD=CQ四邊形PQCD為平行四邊形,
∴24-3t=t,
解得:t=6(s),
∴當(dāng)t=6s時(shí),四邊形PQCD為平行四邊形;
如果P在線段AD的延長(zhǎng)線上,
則當(dāng)PD=CQ時(shí),四邊形DQCP為平行四邊形,
即3t-24=t,
解得:t=12(s),
∴當(dāng)t=6或12s時(shí),以P、Q、C、D為頂點(diǎn)的四邊形是平行四邊形.
考點(diǎn):本題考查了等腰梯形的判定與性質(zhì),平行四邊形的判定與性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是解題時(shí)需要仔細(xì)識(shí)圖,注意合理應(yīng)用數(shù)形結(jié)合思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com