如圖,已知在□ABCD中,AB⊥AC,AB=OA,BC=,對(duì)角線AC、BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC、AD于點(diǎn)EF.

(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試證明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說(shuō)明理由;如果可能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
(1)當(dāng)旋轉(zhuǎn)角為90°時(shí),∠AOF=90°,由AB⊥AC,可得AB∥EF,即可證明四邊形ABEF為平行四邊形;
(2)根據(jù)平行四邊形的性質(zhì)證得△AOF≌△COE即可;(3)45度.

試題分析:(1)當(dāng)旋轉(zhuǎn)角為90°時(shí),∠AOF=90°,由AB⊥AC,可得AB∥EF,即可證明四邊形ABEF為平行四邊形;
(2)根據(jù)平行四邊形的性質(zhì)證得△AOF≌△COE即可;
(3)EF⊥BD時(shí),四邊形BEDF為菱形,可根據(jù)勾股定理求得AC=2,則OA=1=AB,又AB⊥AC,即可求得結(jié)果.
(1)當(dāng)∠AOF=90°時(shí),AB∥EF,
又∵AF∥BE,
∴四邊形ABEF為平行四邊形.
(2)∵四邊形ABCD為平行四邊形,
在△AOF和△COE中
∵∠FAO=∠ECO,AO=CO,∠AOF=∠ECO
∴△AOF≌△COE(ASA)
∴AF=EC;
(3)四邊形BEDF可以是菱形.
理由:如圖,連接BF,DE

由(2)知△AOF≌△COE,得OE=OF,
∴EF與BD互相平分.
∴當(dāng)EF⊥BD時(shí),四邊形BEDF為菱形.
在Rt△ABC中,
∴OA=1=AB,
又∵AB⊥AC,
∴∠AOB=45°,
∴∠AOF=45°,
∴AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°時(shí),四邊形BEDF為菱形.
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性強(qiáng),是中考常見(jiàn)題,難度不大,學(xué)生需熟練掌握平面圖形的基本概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在矩形中,, 現(xiàn)將該矩形沿對(duì)角線折疊,使得點(diǎn)落在點(diǎn)處,邊交邊于點(diǎn),請(qǐng)求出圖中陰影部分的面積.   
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,平行四邊形ABCD中,∠BAD的平分線交BC邊于點(diǎn)M,而MD平分∠AMC,若∠MDC=45°,則∠BAD=     ,∠BAC=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,若CD=5,則四邊形ABCD的面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中錯(cuò)誤的是
A.兩組對(duì)邊分別相等的四邊形是平行四邊形
B.對(duì)角線相等的平行四邊形是矩形
C.一組鄰邊相等的平行四邊形是菱形
D.對(duì)角線相等且互相垂直的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=9,BC=12,點(diǎn)E是BC中點(diǎn),點(diǎn)F是邊CD上的任意一點(diǎn),當(dāng)△AEF的周長(zhǎng)最小時(shí),則DF的長(zhǎng)為(    )
A.4B.6C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖,在平行四邊形中,,∠的平分線交于點(diǎn),交的延長(zhǎng)線于點(diǎn),則的長(zhǎng)為
A.6B.5
C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖①,平行四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)O,直線EF過(guò)點(diǎn)O,分別交AD,BC于點(diǎn)E,F(xiàn).求證:AE=CF.
(2)如圖②,將?ABCD(紙片)沿過(guò)對(duì)角線交點(diǎn)O的直線EF折疊,點(diǎn)A落在點(diǎn)A1處,點(diǎn)B落在點(diǎn)B1處,設(shè)FB1交CD于點(diǎn)G,A1B1分別交CD,DE于點(diǎn)H,I.求證:EI=FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在如右圖的網(wǎng)格中,以格點(diǎn)A、B、C、D、E、F中的4個(gè)點(diǎn)為頂點(diǎn),你能畫出平行四邊形的個(gè)數(shù)為 (      ) 

A.2個(gè)    B.3個(gè)    C.4個(gè)    D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案