【題目】問題探究:
①新知學(xué)習(xí)
若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
②解決問題

已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且SMOA=SDOE
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)

【答案】
(1)

解:如圖一中,

∵AB=AC=BC=2,AD⊥BC,

∴BD=DC,

∴SABD=SADC,

∴線段AD是△ABC的面徑.

∵∠B=60°,

∴sin60°= ,

= ,

∴AD=


(2)

解:如圖二中,

∵M(jìn)E∥BC,且ME是△ABC的一條面徑,

∴△AME∽△ABC, = ,

= ,

∴ME=


(3)

解:如圖三中,作MN⊥AE于N,DF⊥AE于F.

∵SMOA=SDOE,

∴SAEM=SAED,

AEMN= AEDF,

∴MN=DF,

∵M(jìn)N∥DF,

∴四邊形MNFD是平行四邊形,

∴DM∥AE.


(4)

解:如圖四中,作MF⊥BC于F,設(shè)BM=x,BE=y,

∵DM∥AE,

,

∴xy=2,

在RT△MBF中,∵∠MFB=90°,∠B=60°,BM=x,

∴BF= x,MF= x,

∴ME= = = ,

∴ME≥ ,

∵M(jìn)E是等邊三角形面徑,AD也是等邊三角形面積徑,

∴等邊三角形ABC的面徑長l的取值范圍 ≤l≤


【解析】(1)根據(jù)等腰三角形三線合一即可證明,利用直角三角形30°性質(zhì),即可求出AD.(2)根據(jù)相似三角形性質(zhì)面積比等于相似比的平方,即可解決問題.(3)如圖三中,作MN⊥AE于N,DF⊥AE于F,先證明MN=DF,推出四邊形MNFD是平行四邊形即可.(4)如圖四中,作MF⊥BC于F,設(shè)BM=x,BE=y,求出EM,利用不等式性質(zhì)證明ME≥ 即可解決問題.本題考查等邊三角形的性質(zhì)、平行線的性質(zhì),三角形面積等知識,解題的關(guān)鍵是理解題意,學(xué)會條件常用輔助線,記住不等式的性質(zhì)x2+y2≥2xy,屬于中考壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊正方形和一塊等腰直角三角形如圖1擺放.

(1)如果把圖1中的△BCN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到圖2,則∠GBM=;

(2)將△BEF繞點(diǎn)B旋轉(zhuǎn).
①當(dāng)M,N分別在AD,CD上(不與A,D,C重合)時(shí),線段AM,MN,NC之間有一個(gè)不變的相等關(guān)系式,請你寫出這個(gè)關(guān)系式:;(不用證明)
②當(dāng)點(diǎn)M在AD的延長線上,點(diǎn)N在DC的延長線時(shí)(如圖3),①中的關(guān)系式是否仍然成立?若成立,寫出你的結(jié)論,并說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Pn表示n邊形的對角線的交點(diǎn)個(gè)數(shù)(指落在其內(nèi)部的交點(diǎn)),如果這些交點(diǎn)都不重合,那么Pn與n的關(guān)系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過畫圖,可得:四邊形時(shí),P4= ;五邊形時(shí),P5=
(2)請根據(jù)四邊形和五邊形對角線交點(diǎn)的個(gè)數(shù),結(jié)合關(guān)系式,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,將△ABC進(jìn)行位似變換得到△A1B1C1

(1)△A1B1C1與△ABC的位似比是;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)設(shè)點(diǎn)P(a,b)為△ABC內(nèi)一點(diǎn),則依上述兩次變換后,點(diǎn)P在△A2B2C2內(nèi)的對應(yīng)點(diǎn)P2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣2x+4與平面直角坐標(biāo)系中的x軸、y軸分別交于A、B兩點(diǎn),以AB為邊作等腰直角三角形ABC,使得點(diǎn)C與原點(diǎn)OAB兩側(cè),則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案是用長度相同的火柴棒按一定規(guī)律拼搭而成,圖案①需8根火柴棒,圖案②需15根火柴棒,…,按此規(guī)律,圖案⑦需根火柴棒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2cm,動點(diǎn)P從點(diǎn)A出發(fā),在正方形的邊上沿A→B→C的方向運(yùn)動到點(diǎn)C停止,設(shè)點(diǎn)P的運(yùn)動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自來水公司調(diào)查了若干用戶的月用水量x(單位:噸),按月用水量將用戶分成A、B、C、D、E五組進(jìn)行統(tǒng)計(jì),并制作了如圖所示的扇形統(tǒng)計(jì)圖.已知除B組以外,參與調(diào)查的用戶共64戶,則所有參與調(diào)查的用戶中月用水量在6噸以下的共有( 。

組別

月用水量x(單位:噸)

A

0≤x<3

B

3≤x<6

C

6≤x<9

D

9≤x<12

E

x≥12


A.18戶
B.20戶
C.22戶
D.24戶

查看答案和解析>>

同步練習(xí)冊答案