(1)如圖①②,試研究其中∠1、∠2與∠3、∠4之間的數(shù)量關(guān)系;
(2)如果我們把∠1、∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:
如圖③,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).

(1)解:∵∠3、∠4、∠5、∠6是四邊形的四個內(nèi)角,
∴∠3+∠4+∠5+∠6=360°,
∴∠3+∠4=360°-(∠5+∠6),
∵∠1+∠5=180°,∠2+∠6=180°,
∴∠1+∠2=360°-(∠5+∠6),
∴∠1+∠2=∠3+∠4;

(2)答:四邊形的任意兩個外角的和等于與它們不相鄰的兩個內(nèi)角的和;

(3)解:∵∠B+∠C=240°,
∴∠MDA+∠NAD=240°,
∵AE、DE分別是∠NAD、∠MDA的平分線,
∴∠ADE=∠MDA,∠DAE=∠NAD,
∴∠ADE+∠DAE=(∠MDA+∠NAD)=×240°=120°,
∴∠E=180°-(∠ADE+∠DAE)=180°-120°=60°.
分析:(1)根據(jù)四邊形的內(nèi)角和等于360°用∠5+∠6表示出∠3+∠4,再根據(jù)平角的定義用∠5+∠6表示出∠1+∠2,即可得解;
(2)從外角的定義考慮解答;
(3)根據(jù)(1)的結(jié)論求出∠MDA+∠NAD,再根據(jù)角平分線的定義求出∠ADE+∠DAE,然后利用三角形的內(nèi)角和定理列式進(jìn)行計算即可得解.
點評:本題考查了多邊形的內(nèi)角和公式,平角的定義,角平分線的定義,整體思想的利用是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•井研縣模擬)如圖,以BC為直徑的⊙O交△CFB的邊CF于點A,BM平分∠ABC交AC于點M,AD⊥BC于點D,AD交BM于點N,ME⊥BC于點E,AB2=AF•AC,cos∠ABD=
35
,AD=12.
(1)求證:△ANM≌△ENM;
(2)試探究:直線FB與⊙O相切嗎?請說明理由.
(3)探究四邊形AMEN的形狀,并求該四邊形的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市南長區(qū)塘南中學(xué)初三數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•井研縣一模)如圖,已知:A(m,2)是一次函數(shù)y=kx+b與反比例函數(shù)y=的交點
(1)求m的值;
(2)若該一次函數(shù)分別與x軸y軸交于E、F兩點,且直角△EOF的外心為點A.試求它的解析式;
(3)在的圖象上另取一點B,作BK⊥x軸于K,將(2)中的一次函數(shù)圖象繞點A旋轉(zhuǎn)后所得的直線記為l,若l與y軸的正半軸交于點C,且4CO=FO.試問:在y軸上是否存在點P,使得兩個三角形的面積S△PCA=S△BOK?若存在,求點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省樂山市井研縣馬踏學(xué)區(qū)三校聯(lián)合一模試卷(解析版) 題型:解答題

(2009•井研縣一模)如圖,已知:A(m,2)是一次函數(shù)y=kx+b與反比例函數(shù)y=的交點
(1)求m的值;
(2)若該一次函數(shù)分別與x軸y軸交于E、F兩點,且直角△EOF的外心為點A.試求它的解析式;
(3)在的圖象上另取一點B,作BK⊥x軸于K,將(2)中的一次函數(shù)圖象繞點A旋轉(zhuǎn)后所得的直線記為l,若l與y軸的正半軸交于點C,且4CO=FO.試問:在y軸上是否存在點P,使得兩個三角形的面積S△PCA=S△BOK?若存在,求點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案