【題目】如圖,在△ABC中,AB=AC,點(diǎn)E在CA延長線上,EP⊥BC于點(diǎn)P,交AB于點(diǎn)F.
(1)求證:∠E=∠AFE;
(2)若AF=2,BF=5,△ABC的周長為m,求m的取值范圍.
【答案】
(1)解:∵AB=AC,
∴∠B=∠C,
∵EP⊥BC,
∴∠C+∠E=90°,∠B+∠BFP=90°,
∴∠E=∠BFP,
又∵∠BFP=∠AFE,
∴∠E=∠AFE
(2)解:∵∠E=∠AFE,
∴AF=AE,
∴△AEF是等腰三角形.
又∵AF=2,BF=5,
∴CA=AB=7,AE=2,
∴CE=9;
∵0<BC<14,
∴14<△ABC的周長<28,即14<m<28
【解析】(1)根據(jù)等邊對等角得出∠B=∠C,再根據(jù)EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,從而得出∠D=∠BFP,再根據(jù)對頂角相等得出∠E=∠AFE;(2)根據(jù)等角對等邊即可得出CE,然后由三角形的三邊關(guān)系即可得到結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列幾何體中:正方體,長方體,圓柱,六棱柱,圓錐,球,截面的形狀可以為長方形的個(gè)數(shù)為( )
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1(2,2)在直線y=x上,過點(diǎn)A1作A1B1∥y軸交直線于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角△A1B1C1,再過點(diǎn)C1作A2B2∥y軸,分別交直線y=x和于A2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),A2B2為直角邊在A2B2的右側(cè)作等腰直角△A2B2C2…,按此規(guī)律進(jìn)行下去,則等腰直角△AnBnCn的面積為 .(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同一平面內(nèi),直線l與兩條平行線a,b的位置關(guān)系是( )
A. l與a,b平行或相交
B. l可能與a平行,與b相交
C. l與a,b一定都相交
D. 同旁內(nèi)角互補(bǔ),則兩直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式:
(1)3ma3+6m2a2-12ma4; (2)a(m-n)-b(n-m)+c(-n+m);
(3)-a+2a2-a3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論:
①△AED≌△AEF
②△AED為等腰三角形
③BE+DC>DE
④BE2+DC2=DE2 ,
其中正確的有( )個(gè).
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形正確的是( )
A.由5=x一2得x=-5-2
B.由5y=0得y=
C.由2x=3x+5得-5=3x-2x
D.由3x=-2得x=-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程 (m-1) x2+x+m2+2m-3=0的一個(gè)根為0,則m的值為( )
A.m=-3B.m= 1
C.m=1或m=-3D.m=3或m=-1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com