如圖,OA、OB的長分別是關(guān)于x的方程x2-12x+32=0的兩根,且OA>OB.請解答下列問題:
(1)求直線AB的解析式;
(2)若P為AB上一點,且,求過點P的反比例函數(shù)的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點Q,使得以A、P、O、Q為頂點的四邊形是等腰梯形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)首先解x2-12x+32=0,即可求得點A與B的坐標(biāo),然后利用待定系數(shù)法即可求得直線AB的解析式;
(2)首先過點P作PH⊥x軸于點H,由,利用平行線分線段成比例定理,即可求得AH的長,則可求得點P的橫坐標(biāo),代入一次函數(shù)解析式,即可求得點P的坐標(biāo),再利用待定系數(shù)法即可求得過點P的反比例函數(shù)的解析式;
(3)分別從PQ∥AO,AQ∥PO,AP∥OQ去分析,利用函數(shù)解析式與兩點間的距離公式即可求得答案.
解答:解:(1)∵x2-12x+32=0,
∴(x-4)(x-8)=0,
解得:x1=4,x2=8.
∵OA、OB的長分別是關(guān)于x的方程x2-12x+32=0的兩根,且OA>OB,
∴OA=8,OB=4.
∴A(-8,0),B(0,4).
設(shè)直線AB的解析式為y=kx+b,則
,
解得:,
∴直線AB的解析式為:y=x+4;

(2)過點P作PH⊥x軸于點H.
設(shè)P(x,y),
∴AH=|-8-x|=x+8.
∵PH∥y軸,
,


解得 x=-6.
∵點P在y=x+4上,
∴y=×(-6)+4=1.
∴P(-6,1).
設(shè)過點P的反比例函數(shù)的解析式為:y=,則1=
∴k=-6.
∴點P的反比例函數(shù)的解析式為:y=-(x<0).

(3)存在.
如圖①,若PQ∥AO,過點Q作QG⊥AO于G,過點P作PH⊥AO于H,
∵梯形OAPQ是等腰梯形,
∴AH=OG=8-6=2,QG=PH=1,
∴點Q的坐標(biāo)為(-2,1);
如圖②,若AQ∥PO,
∵OP的解析式為:y=-x,
設(shè)直線AQ的解析式為:y=-x+m,
∵A(-8,0),
∴-×(-8)+m=0,
解得:m=-
∴直線AQ的解析式為:y=-x-,
設(shè)點Q的坐標(biāo)為:(x,-x-),
∵梯形APOQ是等腰梯形,
∴PA=OQ,
∴x2+(-x-2=[-8-(-6)]2+12
整理得:37x2+16x-116=0,
即(37x-58)(x+2)=0,
解得:x=或x=-2(舍去),
∴y=-×-=-,
∴點Q的坐標(biāo)為:(,-);
如圖③,若AP∥OQ,
∵直線AP的解析式為:y=x+4,
∴直線OQ的解析式為:y=x,
設(shè)點Q的坐標(biāo)為(x,x),
∵AQ=OP,
∴(x+8)2+(x)2=12+(-6)2,
整理得:5x2+64x+108=0,
即:(5x+54)(x+2)=0,
解得:x=-或x=-2(舍去),
∴y=×(-)=-
∴點Q的坐標(biāo)為(-,-).
綜上,點Q的坐標(biāo)為(-2,1)或(,-)或(-,-).
點評:此題屬于一次函數(shù)的綜合題,考查了待定系數(shù)求函數(shù)解析式、平行線分線段成比例定理、因式分解法解一元二次方程以及等腰梯形的性質(zhì).此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA、OB的長分別是關(guān)于x的方程x2-12x+32=0的兩根,且OA>OB.請解答下列問題:
(1)求直線AB的解析式;
(2)若P為AB上一點,且
AP
PB
=
1
3
,求過點P的反比例函數(shù)的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點Q,使得以A、P、O、Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•牡丹江)如圖,OA、OB的長分別是關(guān)于x的方程x2-12x+32=0的兩根,且OA>OB.請解答下列問題:
(1)求直線AB的解析式;
(2)若P為AB上一點,且
AP
PB
=
1
3
,求過點P的反比例函數(shù)的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點Q,使得以A、P、O、Q為頂點的四邊形是等腰梯形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA、OB的長分別是關(guān)于x的方程的兩根,且。請解答下列問題:

(1)求直線AB的解析式;

(2)若P為AB上一點,且,求過點P的反比例函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山西九年級下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,OA、OB的長分別是關(guān)于x的方程的兩根,且。請解答下列問題:

(1)求直線AB的解析式;

(2)若P為AB上一點,且,求過點P的反比例函數(shù)的解析式。

 

查看答案和解析>>

同步練習(xí)冊答案