已知;函數(shù)是關(guān)于的二次函數(shù),求:   

(1)滿足條件m的值。

    (2)m為何值時(shí),拋物線有最底點(diǎn)?求出這個(gè)最底點(diǎn)的坐標(biāo),這時(shí)為何值時(shí)y隨的增大而增大?

    (3)m為何值時(shí),拋物線有最大值?最大值是多少?這時(shí)為何值時(shí),y隨的增大而減。

解:(1)由已知得:

解得:

    ∴

    (2)當(dāng)m=2時(shí),拋物線有最低點(diǎn),最低點(diǎn)的坐標(biāo)為(0,0)

當(dāng)時(shí),y隨的增大而增大。

    (3)當(dāng)m= ―3時(shí),拋物線有最大值,最大值為0,

當(dāng)時(shí),y隨的增大而減小。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:AC是⊙O的直徑,點(diǎn)A、B、C、O在⊙O1上,OA=2.建立如圖所示的直角坐標(biāo)系.∠ACO=∠ACB=精英家教網(wǎng)60度.
(1)求點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)求經(jīng)過三點(diǎn)A、B、O的二次函數(shù)的解析式;
(3)該拋物線上是否存在點(diǎn)P,使四邊形PABO為梯形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:AC是⊙O的直徑,點(diǎn)A、B、C、O在⊙O1上,OA=2.建立如圖所示的直角坐標(biāo)系.∠ACO=∠ACB=60度.
(1)求點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)求經(jīng)過三點(diǎn)A、B、O的二次函數(shù)的解析式;
(3)該拋物線上是否存在點(diǎn)P,使四邊形PABO為梯形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(41):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:AC是⊙O的直徑,點(diǎn)A、B、C、O在⊙O1上,OA=2.建立如圖所示的直角坐標(biāo)系.∠ACO=∠ACB=60度.
(1)求點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)求經(jīng)過三點(diǎn)A、B、O的二次函數(shù)的解析式;
(3)該拋物線上是否存在點(diǎn)P,使四邊形PABO為梯形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•襄陽)已知:AC是⊙O的直徑,點(diǎn)A、B、C、O在⊙O1上,OA=2.建立如圖所示的直角坐標(biāo)系.∠ACO=∠ACB=60度.
(1)求點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)求經(jīng)過三點(diǎn)A、B、O的二次函數(shù)的解析式;
(3)該拋物線上是否存在點(diǎn)P,使四邊形PABO為梯形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案