【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,以P(1,1)為圓心的⊙P與x軸,y軸分別相切于點M和點N,點F從點M出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,連接PF,過點P作PE⊥PF交y軸于點E,設(shè)點F運動的時間是t秒(t>0).
(1)若點E在y軸的負半軸上(如圖所示),求證:PE=PF;
(2)在點F運動過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點F關(guān)于點M的對稱點F′,經(jīng)過M、E和F′三點的拋物線的對稱軸交x軸于點Q,連接QE.在點F運動過程中,是否存在某一時刻,使得以點Q、O、E為頂點的三角形與以點P、M、F為頂點的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.

【答案】
(1)證明:如圖,連接PM,PN,

∵⊙P與x軸,y軸分別相切于點M和點N,

∴PM⊥MF,PN⊥ON且PM=PN,

∴∠PMF=∠PNE=90°且∠NPM=90°,

∵PE⊥PF,

∠NPE=∠MPF=90°﹣∠MPE,

在△PMF和△PNE中,

,

∴△PMF≌△PNE(ASA),

∴PE=PF


(2)證明:解:分兩種情況:

①當(dāng)t>1時,點E在y軸的負半軸上,如圖1,

由(1)得△PMF≌△PNE,

∴NE=MF=t,PM=PN=1,

∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,

∴b﹣a=1+t﹣(t﹣1)=2,

∴b=2+a,

②0<t≤1時,如圖2,點E在y軸的正半軸或原點上,

同理可證△PMF≌△PNE,

∴b=OF=OM+MF=1+t,a=OE=ON﹣NE=1﹣t,

∴b+a=1+t+1﹣t=2,

∴b=2﹣a.

綜上所述,當(dāng)t>1時,b=2+a;當(dāng)0<t≤1時,b=2﹣a;


(3)證明:存在;

①如圖3,當(dāng)0<t<1時,

∵F(1+t,0),F(xiàn)和F′關(guān)于點M對稱,M的坐標(biāo)為(1,0),

∴F′(1﹣t,0)

∵經(jīng)過M、E和F′三點的拋物線的對稱軸交x軸于點Q,

∴Q(1﹣ t,0)

∴OQ=1﹣ t,

由(1)得△PMF≌△PNE

∴NE=MF=t,

∴OE=1﹣t,

當(dāng)△OEQ∽△MPF

= ,此時無解,

當(dāng)△OEQ∽△MFP時,

,

= ,

解得,t=2﹣ 或t=2+ (舍去);

②如圖4,當(dāng)1<t<2時,

∵F(1+t,0),F(xiàn)和F′關(guān)于點M對稱,M的坐標(biāo)為(1,0),

∴F′(1﹣t,0)

∵經(jīng)過M、E和F′三點的拋物線的對稱軸交x軸于點Q,

∴Q(1﹣ t,0)

∴OQ=1﹣ t,

由(1)得△PMF≌△PNE

∴NE=MF=t,

∴OE=t﹣1

當(dāng)△OEQ∽△MPF

= ,

解得,t= ,

當(dāng)△OEQ∽△MFP時,

,

=

解得,t=

③如圖5,當(dāng)t>2時,

∵F(1+t,0),F(xiàn)和F′關(guān)于點M對稱,

∴F′(1﹣t,0)

∵經(jīng)過M、E和F′三點的拋物線的對稱軸交x軸于點Q,

∴Q(1﹣ t,0)

∴OQ= t﹣1,

由(1)得△PMF≌△PNE

∴NE=MF=t,

∴OE=t﹣1

當(dāng)△OEQ∽△MPF

= ,

無解,

當(dāng)△OEQ∽△MFP時,

,

= ,

解得,t=2+ ,t=2﹣ (舍去)

所以當(dāng)t=2﹣ 或t=2+ 時,使得以點Q、O、E為頂點的三角形與以點P、M、F為頂點的三角形相似


【解析】(1)連接PM,PN,運用△PMF≌△PNE證明;(2)分兩種情況:①當(dāng)t>1時,點E在y軸的負半軸上;②當(dāng)0<t≤1時,點E在y軸的正半軸或原點上,再根據(jù)(1)求解,(3)分兩種情況,當(dāng)1<t<2時,當(dāng)t>2時,三角形相似時還各有兩種情況,根據(jù)比例式求出時間t.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生孝敬父母的情況(選項:A.為父母洗一次腳;B.幫父母做一次家務(wù);C.給父母買一件禮物;D.其它),在全校范圍內(nèi)隨機抽取了若干名學(xué)生進行調(diào)查,得到如圖表(部分信息未給出):學(xué)生孝敬父母情況統(tǒng)計表:

選項

頻數(shù)

頻率

A

m

0.15

B

60

p

C

n

0.4

D

48

0.2

根據(jù)以上信息解答下列問題:

(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中m,n,p的值,并補全條形統(tǒng)計圖.
(3)該校有1600名學(xué)生,估計該校全體學(xué)生中選擇B選項的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在⊙O的直徑AB上,AB=6,AC=1.點P為⊙O上的任意一點,當(dāng)∠OPC取最大值時,則△OCP的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為統(tǒng)籌安排大課間體育活動,在各班隨機選取了一部分學(xué)生,分成四類活動:“籃球”、“羽毛球”、“乒乓球”、“其他”進行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計圖.
(1)學(xué)校采用的調(diào)查方式是;學(xué)校共選取了名學(xué)生;
(2)補全統(tǒng)計圖中的數(shù)據(jù):條形統(tǒng)計圖中羽毛球人、乒乓球人、其他人、扇形統(tǒng)計圖中其他%;
(3)該校共有1100名學(xué)生,請估計喜歡“籃球”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y=ax2+bx+c(a≠0)過A(0,2),B(4,3),C三點,其中點C在直線x=2上,且點C到拋物線的對稱軸的距離等于1,則拋物線的函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正方形OABC如圖放置,O為原點.若∠α=15°,則點B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,8),點P在邊BC上以每秒1個單位長的速度由點C向點B運動,同時點Q在邊AB上以每秒a個單位長的速度由點A向點B運動,運動時間為t秒(t>0).

(1)若反比例函數(shù)y= 圖象經(jīng)過P點、Q點,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點運動到AB中點時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;

查看答案和解析>>

同步練習(xí)冊答案