【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3
(1)用配方法將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)在直角坐標(biāo)系中,用五點(diǎn)法畫(huà)出它的圖象;
(3)利用圖象求當(dāng)x為何值時(shí),函數(shù)值y<0
(4)當(dāng)x為何值時(shí),y隨x的增大而減?
(5)當(dāng)﹣3<x<3時(shí),觀察圖象直接寫(xiě)出函數(shù)值y的取值的范圍.
【答案】(1)y=(x﹣1)2﹣4;(2)見(jiàn)試題解析;(3)由圖象知,當(dāng)﹣1<x<3時(shí),函數(shù)值y<0;
(4)由圖象知,當(dāng)x<1時(shí),y隨x的增大而減。
(5)當(dāng)x=﹣3時(shí),y=9+6﹣3=12,則﹣3<x<3時(shí),0<y<12.
【解析】
試題分析:(1)利用配方法將函數(shù)解析式進(jìn)行轉(zhuǎn)換即可;
(2)根據(jù)頂點(diǎn)式求得頂點(diǎn)坐標(biāo),令x=0,求得與y軸的交點(diǎn),令y=0,求得與x軸的坐標(biāo),再在對(duì)稱軸的兩側(cè)取兩組對(duì)稱點(diǎn),列表,然后描點(diǎn)、連線即可.
(3)、(4)、(5)根據(jù)二次函數(shù)圖象的性質(zhì)即可解答.
試題解析:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4;
(2)由(1)可知,y=(x﹣1)2﹣4,則頂點(diǎn)坐標(biāo)為(1,﹣4),
令x=0,則y=﹣3,
∴與y軸交點(diǎn)為(0,﹣3),
令y=0,則0=x2﹣2x﹣3,解得x1=﹣1,x2=3,
∴與x軸交點(diǎn)為(﹣1,0),(3,0).
列表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y=x2﹣2x﹣3 | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
描點(diǎn)、連線:
(3)由圖象知,當(dāng)﹣1<x<3時(shí),函數(shù)值y<0;
(4)由圖象知,當(dāng)x<1時(shí),y隨x的增大而減小;
(5)當(dāng)x=﹣3時(shí),y=9+6﹣3=12,則﹣3<x<3時(shí),0<y<12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(+26)﹣(﹣26)﹣6
(2)(﹣4)× ÷8
(3)( ﹣ + )×(﹣36)
(4)(﹣2)2﹣[﹣32+(﹣11)]×(﹣2)÷(﹣1)2016 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則點(diǎn)D的坐標(biāo)是( )
A.(﹣2,1)
B.(﹣2,﹣1)
C.(﹣1,﹣2)
D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩個(gè)倉(cāng)庫(kù)要向A、B兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫(kù)到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄“元/(噸、千米)”表示每噸水泥運(yùn)送1千米所需人民幣)(本題滿分10分)
路程/千米 | 運(yùn)費(fèi)(元/噸、千米) | |||
甲庫(kù) | 乙?guī)?/span> | 甲庫(kù) | 乙?guī)?/span> | |
A地 | 20 | 15 | 12 | 12 |
B地 | 25 | 20 | 10 | 8 |
(1)設(shè)甲庫(kù)運(yùn)往A地水泥噸,求總運(yùn)費(fèi)(元)關(guān)于(噸)的函數(shù)關(guān)系式;
(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最?最省的總運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y1=ax2+bx+3的圖象與x軸相交于點(diǎn)A(﹣3,0)、B(1,0),交y軸于點(diǎn)C,C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)y2=mx+n的圖象經(jīng)過(guò)B、D兩點(diǎn).
(1)求二次函數(shù)的解析式及點(diǎn)D的坐標(biāo);
(2)根據(jù)圖象寫(xiě)出y2>y1時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】x=﹣3,y=1為下列哪一個(gè)二元一次方程式的解?( 。
A.x+2y=﹣1
B.x﹣2y=1
C.2x+3y=6
D.2x﹣3y=﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)位置如圖所示
(1)用“<”連接0、﹣a、﹣b、﹣1
(2)化簡(jiǎn):|a|﹣2|a+b﹣1|﹣ |b﹣a﹣1|
(3)若a2c+c<0,且c+b>0,求 + ﹣ 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com