使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對于函數(shù),令,可得,我們就說是函數(shù)的零點(diǎn).請根據(jù)零點(diǎn)的定義解決下列問題:

已知函數(shù)m為常數(shù)).

(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn);

(2)證明:無論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);

(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為,且,此時(shí)函數(shù)圖象與軸的交點(diǎn)分別為A、B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)解析式.

解:(1)當(dāng)時(shí),,    -------1分 

,即,解得, 

∴當(dāng)時(shí),該函數(shù)的零點(diǎn)為和-

(2)令,即,       

△=(-2m)2-4[-2(m+3)] =4m2+8m+24△=4(m+1)2+20                             

∵無論m為何值,4(m+1)2≥0,4(m+1)2+20>0, 即△>0                                    

∴無論m為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根,

即該函數(shù)總有兩個(gè)零點(diǎn).        

(3)依題意有,,,   

=-,即=-

解得m=1.                                             

因此函數(shù)解析式為y=x2-2x-8,

y=0,解得x1=-2,x2=4,                       

A(-2,0),B(4,0),                        

作點(diǎn)B關(guān)于直線的對稱點(diǎn)B´,連結(jié)AB´,  

AB´與直線的交點(diǎn)就是滿足條件的M點(diǎn).                 

易求得直線x軸、y軸的交點(diǎn)分別為C(10,0),D(0,-10),

連結(jié)CB´,則∠BCD=45°,∴BC=CB´=6,∠B´CD=∠BCD=45°,

∴∠BCB´=90°. 即(10,-6).                    ………7分

設(shè)直線AB´的解析式為,則

,解得,.

∴直線AB´的解析式為

AM的解析式為.                

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對于函數(shù)y=x-1,令y=0,可得x=1,我們就說1是函數(shù)y=x-1的零點(diǎn).
己知函數(shù)y=x2-2mx-2(m+3)(m為常數(shù)).
(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn);
(2)證明:無論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);
(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為x1和x2,且
1
x1
+
1
x2
=-
1
4
,此時(shí)函數(shù)圖象與x軸的交點(diǎn)分別為A、B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線y=x-10上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對于函數(shù)y=x-1,令y=0,可得x=1,我們就說1是函數(shù)y=x-1的零點(diǎn).請根據(jù)零點(diǎn)的定義解決下列問題:
已知函數(shù)y=x2+kx+2k-4(k為常數(shù)).當(dāng)k=2時(shí),求該函數(shù)的零點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東東阿縣第三中學(xué)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對于函數(shù),令,可得,我們就說是函數(shù)的零點(diǎn).請根據(jù)零點(diǎn)的定義解決下列問題:已知函數(shù)(m為常數(shù)).
【小題1】當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn)
【小題2】證明:無論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);
【小題3】設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為,且,此時(shí)函數(shù)圖象與軸的交點(diǎn)分別為A、B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南長沙卷)數(shù)學(xué) 題型:解答題

使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn)。例如,對于函數(shù),令y=0,可得x=1,我們就說1是函數(shù)的零點(diǎn)。
己知函數(shù) (m為常數(shù))。
(1)當(dāng)=0時(shí),求該函數(shù)的零點(diǎn);
(2)證明:無論取何值,該函數(shù)總有兩個(gè)零點(diǎn);
(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為,且,此時(shí)函數(shù)圖象與x軸的交點(diǎn)分
別為A、B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建廈門外國語學(xué)校九年級中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對于函數(shù),令,可得,我們就說是函數(shù)的零點(diǎn).請根據(jù)零點(diǎn)的定義解決下列問題:已知函數(shù)(k為常數(shù)).當(dāng)k=2時(shí),求該函數(shù)的零點(diǎn);

 

查看答案和解析>>

同步練習(xí)冊答案