如圖,在△ABC中,已知∠ABC=35°,點D在BC上,點E在AC上,∠BAD=∠EBC,AD交BE于F.
(1)求∠BFD的度數(shù);
(2)若EG//AD交BC于G,EH⊥BE交BC于H,求∠HEG的度數(shù).
(1)35°;(2)55°
解析試題分析:(1)由三角形的外角性質(zhì)可知∠BFD=∠ABF+∠BAD,又由∠ABC=∠ABF+∠EBC=35°,∠BAD=∠EBC,則∠BFD的度數(shù)可求;
(2)由EG//AD,可得∠BFD=∠BEG,又由∠BEH=90°,即∠HEG可求.
試題解析:(1)∵∠BFD是△ABF的外角,
∴∠BFD=∠ABF+∠BAD,
又∵∠ABC=∠ABF+∠EBC=35°,∠BAD=∠EBC,
∴∠BFD=35°;
(2)∵EG//AD,
∴∠BFD=∠BEG=35°,
又∵EH⊥BE,
∴∠HEG=90°-35°=55°
考點:1.三角形的外角性質(zhì);2.平行線的性質(zhì)
科目:初中數(shù)學(xué) 來源: 題型:解答題
看圖填空:
如圖,∠1的同位角是 ,
∠1的內(nèi)錯角是 ,
如果∠1=∠BCD,那么 ,根據(jù)是 ;
如果∠ACD=∠EGF,那么 ,根據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,EF//AD,∠1=∠2,∠BAC=80°.將求∠AGD的過程填寫完整.
∵EF∥AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=80°,
∴∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,將一副三角板,如圖放置在桌面上,讓三角板OAB的30°角頂點與三角板OCD的直角頂點重合,邊OA與OC重合,固定三角板OCD不動,把三角板OAB繞著頂點O順時針轉(zhuǎn)動,直到邊OB落在桌面上為止。
(1)如下圖,當(dāng)三角板OAB轉(zhuǎn)動了20°時,求∠BOD的度數(shù);
(2)在轉(zhuǎn)動過程中,若∠BOD=20°,在下面兩圖中分別畫出∠AOB的位置,并求出轉(zhuǎn)動了多少度?
(3)在轉(zhuǎn)動過程中,∠AOC與∠BOD有怎樣的等量關(guān)系,請你給出相等關(guān)系式,并說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com