精英家教網 > 初中數學 > 題目詳情
已知拋物線y=x2+1(如圖所示).
(1)填空:拋物線的頂點坐標是(______,______),對稱軸是______;
(2)已知y軸上一點A(0,2),點P在拋物線上,過點P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點P的坐標;
(3)在(2)的條件下,點M在直線AP上.在平面內是否存在點N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點N的坐標;若不存在,請說明理由.

【答案】分析:(1)根據函數的解析式直接寫出其頂點坐標和對稱軸即可;
(2)根據等邊三角形的性質求得PB=4,將PB=4代入函數的解析式后求得x的值即可作為P點的橫坐標,代入解析式即可求得P點的縱坐標;
(3)首先求得直線AP的解析式,然后設出點M的坐標,利用勾股定理表示出有關AP的長即可得到有關M點的橫坐標的方程,求得M的橫坐標后即可求得其縱坐標,
解答:解:(1)頂點坐標是(0,1),對稱軸是y軸(或x=O).

(2)∵△PAB是等邊三角形,
∴∠ABO=90°-60°=30°.
∴AB=20A=4.
∴PB=4.
解法一:把y=4代入y=x2+1,
得  x=±2
∴P1(2,4),P2(-2,4).  
解法二:∴OB==2
∴P1(2,4).    
根據拋物線的對稱性,得P2(-2,4). 

(3)∵點A的坐標為(0,2),點P的坐標為(2,4)
∴設線段AP所在直線的解析式為y=kx+b

解得:
∴解析式為:y=x+2
設存在點N使得OAMN是菱形,
∵點M在直線AP上,
∴設點M的坐標為:(m,m+2)
如圖,作MQ⊥y軸于點Q,則MQ=m,AQ=OQ-OA=m+2-2=m
∵四邊形OAMN為菱形,
∴AM=AO=2,
∴在直角三角形AMQ中,AQ2+MQ2=AM2,
即:m2+(m)2=22
解得:m=±
代入直線AP的解析式求得y=3或1,
當P點在拋物線的右支上時,分為兩種情況:
當N在右圖1位置時,
∵OA=MN,
∴MN=2,
又∵M點坐標為(,3),
∴N點坐標為(,1),即N1坐標為(,1).
當N在右圖2位置時,
∵MN=OA=2,M點坐標為(-,1),
∴N點坐標為(-,-1),即N2坐標為(-,-1).
當P點在拋物線的左支上時,分為兩種情況:
第一種是當點M在線段PA上時(PA內部)我們求出N點坐標為(-,1);
第二種是當M點在PA的延長線上時(在第一象限)我們求出N點坐標為(,-1)
∴存在N1,1),N2(-,-1)N3(-,1),N4,-1)使得四邊形OAMN是菱形.
點評:本題考查了二次函數的應用,解題的關鍵是仔細讀題,并能正確的將點的坐標轉化為線段的長,本題中所涉及的存在型問題更是近幾年中考的熱點問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側;
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經過點C,求平移后所得拋物線的表達式;
(3)設(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數式m2-m+2011的值為( 。

查看答案和解析>>

同步練習冊答案