如圖.∠BAC=90゜,AB=AC,D為BC上一點,CE⊥AD于E,BF⊥AD于,若CE=7,
BF=4,求EF的長.

解:如圖,∵∠BAC=90°,
∴∠1+∠2=90°,
∵CE⊥AD,
∴∠AEC=90°,∠2+∠3=90°,
∴∠1=∠3,
∵BF⊥AD,
∴∠F=90°,
∴∠AEC=∠F=90°,
在△ABF和△CAE中,,
∴△ABF≌△CAE(AAS),
∴AF=CE=7,AE=BF=4,
∴EF=AF-AE=7-4=3,
即EF=3.
分析:根據(jù)同角的余角相等求出∠1=∠3,然后利用“角角邊”證明△ABF和△CAE全等,根據(jù)全等三角形對應邊相等可得AF=CE,AE=BF,然后根據(jù)EF=AF-AE代入數(shù)據(jù)進行計算即可得解.
點評:本題考查了全等三角形的判定與性質,同角的余角相等的性質,利用阿拉伯數(shù)字加弧線表示角更形象直觀.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,∠BAC=90°,AD⊥BC,△ABE,△ACF都是等邊三角形,則S△ABE:S△ACF等于( 。
A、AB:ACB、AD2:DC2C、BD2:DC2D、AC2:AB2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖,∠BAC=90°,AD⊥BC,則圖中互余的角有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠BAC=90°,AC=AB,直線l與以AB為直徑的圓相切于點B,點E是圓上異于A、B的任意一點.精英家教網(wǎng)直線AE與l相交于點D.
(1)如果AD=10,BD=6,求DE的長;
(2)連接CE,過E作CE的垂線交直線AB于F.當點E在什么位置時,相應的F位于線段AB上、位于BA的延長線上、位于AB的延長線上(寫出結果,不要求證明).無論點E如何變化,總有BD=BF.請你就上述三種情況任選一種說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(任選做一題)
(1)如圖,在平行四邊形ABCD中,E是AD上的一點.求證:AE•OB=OE•CB;
精英家教網(wǎng)
(2)已知如圖,∠BAC=90°,AD⊥BC,AE=EC,ED延長線交AB的延長線于點F.
求證:①△DBF∽△ADF;②
AB
AC
=
DF
AF

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠BAC=90°,∠C=30°,AD⊥BC于D,DE⊥AB于E,BE=1,BC=
8
8

查看答案和解析>>

同步練習冊答案