如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分別是邊AB、AC的中點,點P從點D出發(fā)沿DE方向運動,過點P作PQ⊥BC于Q,過點Q作QR‖BA交AC于R,當點Q與點C重合時,點P停止運動.
【小題1】求點D到BC的距離DH的長;
【小題2】設(shè)BQ=x, QR=y(tǒng).
① 求y關(guān)于x的函數(shù)關(guān)系式(0≤x≤10);
② 是否存在點P,使△PQR為等腰三角形?若存在,求出所有滿足要求的x的值;若不存在,請說明理由.
【小題1】在Rt△ABC中,∵AB=6,AC=8,∴BC=10.
∵BC邊上的高為,D為AB中點,
【小題1】①∵QR∥AB,△RQC∽△ABC, .
∵BQ=x,CQ=10-x,
∴,.
。╥)當QR為底邊時,QM=y(tǒng)=,PQ=DH=,
作PM⊥QR于M,則△PQM∽△BCA,,
=.解得x1=BQ =.
(ii)當PR為底邊時,QR=PQ=,
∵QR∥AB, ,BQ×6=×10,解得CQ=4.
∴ x2=BQ=6.
(iii)當PQ為底邊時,點R在PQ的垂直平分線上,點R是CE中點.
∵ QR∥AB,∴ ,解得x3=BQ=.
綜上所述,當為或6或時,為等腰三角形.
解析【小題1】根據(jù)三角形相似的判定定理求出△BHD∽△BAC,根據(jù)相似三角形的性質(zhì)求出DH的長;
【小題1】①根據(jù)△RQC∽△ABC,根據(jù)三角形的相似比求出y關(guān)于x的函數(shù)關(guān)系式;
②畫出圖形,根據(jù)圖形進行討論:
① 當PQ=PR時,過點P作PM⊥QR于M,則QM=RM.由于∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.
② ∴cos∠1=cosC==,∴,即可求出x的值;
③ 當PQ=RQ時,-x+6=,x=6;
④ 當PR=QR時,則R為PQ中垂線上的點,于是點R為EC的中點,故CR=CE=AC=2.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com