如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分別是邊AB、AC的中點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿DE方向運(yùn)動(dòng),過點(diǎn)P作PQ⊥BC于Q,過點(diǎn)Q作QR‖BA交AC于R,當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)P停止運(yùn)動(dòng).
【小題1】求點(diǎn)D到BC的距離DH的長(zhǎng);
【小題2】設(shè)BQ=x, QR=y(tǒng).
① 求y關(guān)于x的函數(shù)關(guān)系式(0≤x≤10);
② 是否存在點(diǎn)P,使△PQR為等腰三角形?若存在,求出所有滿足要求的x的值;若不存在,請(qǐng)說明理由.


【小題1】在Rt△ABC中,∵AB=6,AC=8,∴BC=10.   
∵BC邊上的高為,D為AB中點(diǎn),       
     
【小題1】①∵QR∥AB,△RQC∽△ABC, .    
    ∵BQ=x,CQ=10-x,                 
,.  
       (i)當(dāng)QR為底邊時(shí),QM=y(tǒng)=,PQ=DH=
作PM⊥QR于M,則△PQM∽△BCA,
.解得x1=BQ =.
(ii)當(dāng)PR為底邊時(shí),QR=PQ=
∵QR∥AB, ,BQ×6=×10,解得CQ=4.
∴ x2=BQ=6.
(iii)當(dāng)PQ為底邊時(shí),點(diǎn)R在PQ的垂直平分線上,點(diǎn)R是CE中點(diǎn).
∵ QR∥AB,∴ ,解得x3=BQ=.
綜上所述,當(dāng)或6或時(shí),為等腰三角形.

解析【小題1】根據(jù)三角形相似的判定定理求出△BHD∽△BAC,根據(jù)相似三角形的性質(zhì)求出DH的長(zhǎng);
【小題1】①根據(jù)△RQC∽△ABC,根據(jù)三角形的相似比求出y關(guān)于x的函數(shù)關(guān)系式;
②畫出圖形,根據(jù)圖形進(jìn)行討論:
① 當(dāng)PQ=PR時(shí),過點(diǎn)P作PM⊥QR于M,則QM=RM.由于∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C.
② ∴cos∠1=cosC==,∴,即可求出x的值;
③ 當(dāng)PQ=RQ時(shí),-x+6=,x=6;
④ 當(dāng)PR=QR時(shí),則R為PQ中垂線上的點(diǎn),于是點(diǎn)R為EC的中點(diǎn),故CR=CE=AC=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案