正方形四條邊都相等,四個(gè)角都是90°,如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,點(diǎn)E是BC上一點(diǎn),以AE為邊在BC所在的直線MN的上方作正方形AEFG.
(1)判斷△ADG與△ABE是否全等,并說(shuō)明理由;
(2)過(guò)點(diǎn)F作FH⊥MN,垂足為點(diǎn)H,觀察并猜測(cè)線段FH與線段CH的數(shù)量關(guān)系,并說(shuō)明理由.
(1)△ADG≌△ABE.理由如下:
∵四邊形ABCD和四邊形AEFG是正方形,
∴AB=AD,AE=AG,∠ABE=∠ADG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG.
∴△ADG≌△ABE;
(2)FH=CH.理由如下:
由已知可得∠EAG=∠BAD=∠AEF=90°,
由①得∠FEH=∠BAE=∠DAG,
又∵G在射線CD上,∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,
∴∠BAE=∠DAG=∠EFH,
∴△EFH≌△GAD,△EFH≌△ABE,
∴EH=AD=BC,BE= FH
∴CH=BE.FH=CH
【解析】(1)利用正方形的性質(zhì)及SAS定理求出△ADG≌△ABE,再利用全等三角形的性質(zhì)即可解答;
(2)利用正方形的性質(zhì)及SAS定理求出△ADG≌△ABE,再利用全等三角形的性質(zhì)即可解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇吳江七年級(jí)下期期末調(diào)研數(shù)學(xué)試卷(帶解析) 題型:解答題
正方形四條邊都相等,四個(gè)角都是90°,如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,點(diǎn)E是BC上一點(diǎn),以AE為邊在BC所在的直線MN的上方作正方形AEFG.
(1)判斷△ADG與△ABE是否全等,并說(shuō)明理由;
(2)過(guò)點(diǎn)F作FH⊥MN,垂足為點(diǎn)H,觀察并猜測(cè)線段FH與線段CH的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com