【題目】如圖,已知△ABC,AD平分∠BAC交BC于點(diǎn)D,BC的中點(diǎn)為M,ME∥AD,交BA的延長線于點(diǎn)E,交AC于點(diǎn)F.

(1)求證:AE=AF;

(2)求證:BE=(AB+AC).

【答案】(1)詳見解析;(2)詳見解析.

【解析】

試題分析:(1)根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)易AEF=AFE,即可得AE=AF;(2)作CGEM,交BA的延長線于G,已知AC=AG,根據(jù)三角形中位線定理的推論證明BE=EG,再利用三角形的中位線定理即可證得結(jié)論.

試題解析:

(1)DA平分BAC,

∴∠BAD=CAD,

ADEM,

∴∠BAD=AEF,CAD=AFE,

∴∠AEF=AFE,

AE=AF.

(2)作CGEM,交BA的延長線于G.

EFCG,

∴∠G=AEF,ACG=AFE,

∵∠AEF=AFE,

∴∠G=ACG,

AG=AC,

BM=CM.EMCG,

BE=EG,

BE=BG=(BA+AG)=(AB+AC).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC與三角形A'B'C'在平面直角坐標(biāo)系中的位置如圖:

1)分別寫出下列各點(diǎn)的坐標(biāo):A'_____; B'_____;C'_____;

2)三角形A'B'C'由三角形ABC經(jīng)過怎樣的平移得到?___________;

3)若點(diǎn)Pa,b)是三角形ABC內(nèi)部一點(diǎn),則平移后三角形A'B'C'內(nèi)的對應(yīng)點(diǎn)P'的坐標(biāo)為_________;

4)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,BDAC于點(diǎn)D,EBC上一點(diǎn),過E點(diǎn)作EFAC,垂足為F,過點(diǎn)DDHBCAB于點(diǎn)H.

(1)請你補(bǔ)全圖形。

(2)求證:BDH=CEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆柋硎鞠铝嘘P(guān)系:

(l)a的2倍比a與3的和小; (2)y的一半與5的差是非負(fù)數(shù);

(3)x的3倍與1的和小于x的2倍與5的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P(﹣12),則點(diǎn)P所在的象限為( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2是方程ax4的解,則a的值為( 。

A.2B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建省衛(wèi)生城市,有關(guān)部門決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配A、B兩種園藝造型共60個,擺放于入城大道的兩側(cè),搭配每個造型所需花卉數(shù)量的情況下表所示,結(jié)合上述信息,解答下列問題:

造型花卉

A

80

40

B

50

70


(1)符合題意的搭配方案有幾種?
(2)如果搭配一個A種造型的成本為1000元,搭配一個B種造型的成本為1500元,試說明選用那種方案成本最低?最低成本為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商廈進(jìn)貨員在蘇州發(fā)現(xiàn)了一種應(yīng)季圍巾,用8000元購進(jìn)一批圍巾后,發(fā)現(xiàn)市場還有較大的需求,又在上海用17600元購進(jìn)了同一種圍巾,數(shù)量恰好是在蘇州所購數(shù)量的2倍,但每條比在蘇州購進(jìn)的多了4問某商廈在蘇州、上海分別購買了多少條圍巾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計(jì)劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).

(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;

(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

查看答案和解析>>

同步練習(xí)冊答案