如圖,已知直l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是2,如果正方形ABCD的四個頂點分別在四條直線上,則正方形邊長的值為
2
5
2
5
分析:過D點作直線EF與平行線垂直,與l1交于點E,與l4交于點F.易證△ADE≌△DFC,得CF=2,DF=4.根據(jù)勾股定理可求CD的長.
解答:解:作EF⊥l2,交l1于E點,交l4于F點.
∵l1∥l2∥l3∥l4,EF⊥l2,
∴EF⊥l1,EF⊥l4
即∠AED=∠DFC=90°.
∵ABCD為正方形,
∴∠ADC=90°.
∴∠ADE+∠CDF=90°.
又∵∠ADE+∠DAE=90°,
∴∠CDF=∠DAE.
在△ADE與△DCF中,
∠CDF=∠DAE
AD=CD
∠ADE=∠DCF

∴△ADE≌△DCF(ASA),
∴CF=DE=2.
∵DF=4,
∴CD=
DF2+CF2
=
42+22
=2
5

故答案為:2
5
點評:本題考查了全等三角形的判定與性質,正方形的性質,銳角三角形函數(shù)的定義,作輔助線,構造出全等三角形是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2數(shù)學公式相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案